In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 29, 2005, 15:27:48)... |
In[2]:= | PD[Knot[10, 77]] |
Out[2]= | PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[13, 17, 14, 16], X[5, 15, 6, 14],
X[15, 7, 16, 6], X[9, 19, 10, 18], X[11, 1, 12, 20],
X[19, 11, 20, 10], X[17, 13, 18, 12], X[7, 2, 8, 3]] |
In[3]:= | GaussCode[Knot[10, 77]] |
Out[3]= | GaussCode[-1, 10, -2, 1, -4, 5, -10, 2, -6, 8, -7, 9, -3, 4, -5, 3, -9,
6, -8, 7] |
In[4]:= | DTCode[Knot[10, 77]] |
Out[4]= | DTCode[4, 8, 14, 2, 18, 20, 16, 6, 12, 10] |
In[5]:= | br = BR[Knot[10, 77]] |
Out[5]= | BR[4, {1, 1, 1, 1, 2, -1, -3, 2, 2, -3, -3}] |
In[6]:= | {First[br], Crossings[br]} |
Out[6]= | {4, 11} |
In[7]:= | BraidIndex[Knot[10, 77]] |
Out[7]= | 4 |
In[8]:= | Show[DrawMorseLink[Knot[10, 77]]] |
| |
Out[8]= | -Graphics- |
In[9]:= | (#[Knot[10, 77]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex} |
Out[9]= | {Reversible, {2, 3}, 3, 3, NotAvailable, 1} |
In[10]:= | alex = Alexander[Knot[10, 77]][t] |
Out[10]= | 2 7 14 2 3
-17 + -- - -- + -- + 14 t - 7 t + 2 t
3 2 t
t t |
In[11]:= | Conway[Knot[10, 77]][z] |
Out[11]= | 2 4 6
1 + 4 z + 5 z + 2 z |
In[12]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[12]= | {Knot[10, 65], Knot[10, 77], Knot[11, NonAlternating, 71],
Knot[11, NonAlternating, 75]} |
In[13]:= | {KnotDet[Knot[10, 77]], KnotSignature[Knot[10, 77]]} |
Out[13]= | {63, 2} |
In[14]:= | Jones[Knot[10, 77]][q] |
Out[14]= | -2 2 2 3 4 5 6 7 8
-4 - q + - + 8 q - 9 q + 11 q - 10 q + 8 q - 6 q + 3 q - q
q |
In[15]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[15]= | {Knot[10, 77]} |
In[16]:= | A2Invariant[Knot[10, 77]][q] |
Out[16]= | -6 -2 2 6 8 12 14 16 18 20
-1 - q - q + 3 q + 4 q + 2 q + q - 3 q + q - q - q +
22 24
q - q |
In[17]:= | HOMFLYPT[Knot[10, 77]][a, z] |
Out[17]= | 2 2 2 4 4
-6 -4 5 2 2 z 2 z 7 z 4 z 3 z
-2 - a - a + -- - 3 z - ---- + ---- + ---- - z - -- + ---- +
2 6 4 2 6 4
a a a a a a
4 6 6
4 z z z
---- + -- + --
2 4 2
a a a |
In[18]:= | Kauffman[Knot[10, 77]][a, z] |
Out[18]= | 2
-6 -4 5 z z z 3 z 4 z 2 2 z
-2 + a - a - -- + -- - -- - -- + --- + --- + 2 a z + 4 z + ---- -
2 9 7 5 3 a 8
a a a a a a
2 2 2 3 3 3 3 4
2 z z 7 z 2 z 2 z 6 z 5 z 3 4 6 z
---- - -- + ---- - ---- + ---- + ---- - ---- - 3 a z - 5 z - ---- +
6 4 2 9 7 5 a 8
a a a a a a a
4 4 5 5 5 5 5 6
8 z 3 z z 7 z 9 z 3 z z 5 6 3 z
---- - ---- + -- - ---- - ---- - ---- - -- + a z + 2 z + ---- -
4 2 9 7 5 3 a 8
a a a a a a a
6 6 6 7 7 7 7 8 8 8
3 z 9 z z 4 z 4 z 2 z 2 z 3 z 5 z 2 z
---- - ---- - -- + ---- + ---- + ---- + ---- + ---- + ---- + ---- +
6 4 2 7 5 3 a 6 4 2
a a a a a a a a a
9 9
z z
-- + --
5 3
a a |
In[19]:= | {Vassiliev[2][Knot[10, 77]], Vassiliev[3][Knot[10, 77]]} |
Out[19]= | {4, 5} |
In[20]:= | Kh[Knot[10, 77]][q, t] |
Out[20]= | 3 1 1 1 3 q 3 5
5 q + 4 q + ----- + ----- + ---- + --- + - + 5 q t + 4 q t +
5 3 3 2 2 q t t
q t q t q t
5 2 7 2 7 3 9 3 9 4 11 4
6 q t + 5 q t + 4 q t + 6 q t + 4 q t + 4 q t +
11 5 13 5 13 6 15 6 17 7
2 q t + 4 q t + q t + 2 q t + q t |
In[21]:= | ColouredJones[Knot[10, 77], 2][q] |
Out[21]= | -7 2 5 9 -2 18 2 3 4
-26 + q - -- + -- - -- + q + -- - q + 47 q - 50 q - 13 q +
6 4 3 q
q q q
5 6 7 8 9 10 11 12
82 q - 65 q - 31 q + 102 q - 63 q - 43 q + 95 q - 43 q -
13 14 15 16 17 18 19 20
44 q + 67 q - 18 q - 33 q + 33 q - 2 q - 15 q + 9 q +
21 22 23
q - 3 q + q |