In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[5, Alternating, 1]] |
Out[2]= | 5 |
In[3]:= | PD[Link[5, Alternating, 1]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 7, 5, 8], X[4, 5, 1, 6], X[2, 10, 3, 9],
X[8, 4, 9, 3]] |
In[4]:= | GaussCode[Link[5, Alternating, 1]] |
Out[4]= | GaussCode[{1, -4, 5, -3}, {3, -1, 2, -5, 4, -2}] |
In[5]:= | BR[Link[5, Alternating, 1]] |
Out[5]= | BR[Link[5, Alternating, 1]] |
In[6]:= | alex = Alexander[Link[5, Alternating, 1]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[5, Alternating, 1]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[5, Alternating, 1]], KnotSignature[Link[5, Alternating, 1]]} |
Out[9]= | {Infinity, -1} |
In[10]:= | J=Jones[Link[5, Alternating, 1]][q] |
Out[10]= | -(7/2) 2 -(3/2) 2 3/2
q - ---- + q - ------- + Sqrt[q] - q
5/2 Sqrt[q]
q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[5, Alternating, 1]][q] |
Out[12]= | -12 -8 -6 2 -2 2 4 6
2 - q + q + q + -- + q + q + q + q
4
q |
In[13]:= | Kauffman[Link[5, Alternating, 1]][a, z] |
Out[13]= | 3
1 a 2 z 3 2 4 2 z 3
1 - --- - - + --- + 4 a z + 2 a z + z - a z - -- - 3 a z -
a z z a a
3 3 4 2 4
2 a z - z - a z |
In[14]:= | {Vassiliev[2][Link[5, Alternating, 1]], Vassiliev[3][Link[5, Alternating, 1]]} |
Out[14]= | 1
{0, -}
2 |
In[15]:= | Kh[Link[5, Alternating, 1]][q, t] |
Out[15]= | 2 1 1 1 1 4 2
2 + -- + ----- + ----- + ----- + ---- + t + q t
2 8 3 6 2 4 2 2
q q t q t q t q t |