L5a1

From Knot Atlas
Revision as of 20:15, 28 August 2005 by ScottTestRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L4a1.gif

L4a1

L6a1.gif

L6a1

L5a1.gif Visit L5a1's page at Knotilus!

Visit L5a1's page at the original Knot Atlas!

L5a1 is in Rolfsen's Table of Links. It is also known as the "Whitehead Link".



Basic depiction
Drawing of "Thor's hammer" or Mjölnir found in Sweden
Wolfgang Staubach's medallion based on this [1]
A kolam with two cycles, one of which is twisted[2]
A simplest closed-loop version of heraldic "fret" / "fretty" ornamentation.
Bisexuality symbol.

Knot presentations

Planar diagram presentation X6172 X10,7,5,8 X4516 X2,10,3,9 X8493
Gauss code {1, -4, 5, -3}, {3, -1, 2, -5, 4, -2}

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -1 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Vassiliev invariants

V2 and V3: (0, )
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:L5a1/V 2,1 Data:L5a1/V 3,1 Data:L5a1/V 4,1 Data:L5a1/V 4,2 Data:L5a1/V 4,3 Data:L5a1/V 5,1 Data:L5a1/V 5,2 Data:L5a1/V 5,3 Data:L5a1/V 5,4 Data:L5a1/V 6,1 Data:L5a1/V 6,2 Data:L5a1/V 6,3 Data:L5a1/V 6,4 Data:L5a1/V 6,5 Data:L5a1/V 6,6 Data:L5a1/V 6,7 Data:L5a1/V 6,8 Data:L5a1/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -1 is the signature of L5a1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-1012χ
4     11
2      0
0   21 1
-2  12  1
-4 1    1
-6 1    1
-81     -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Link[5, Alternating, 1]]
Out[2]=  
5
In[3]:=
PD[Link[5, Alternating, 1]]
Out[3]=  
PD[X[6, 1, 7, 2], X[10, 7, 5, 8], X[4, 5, 1, 6], X[2, 10, 3, 9], 
  X[8, 4, 9, 3]]
In[4]:=
GaussCode[Link[5, Alternating, 1]]
Out[4]=  
GaussCode[{1, -4, 5, -3}, {3, -1, 2, -5, 4, -2}]
In[5]:=
BR[Link[5, Alternating, 1]]
Out[5]=  
BR[Link[5, Alternating, 1]]
In[6]:=
alex = Alexander[Link[5, Alternating, 1]][t]
Out[6]=  
ComplexInfinity
In[7]:=
Conway[Link[5, Alternating, 1]][z]
Out[7]=  
ComplexInfinity
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{}
In[9]:=
{KnotDet[Link[5, Alternating, 1]], KnotSignature[Link[5, Alternating, 1]]}
Out[9]=  
{Infinity, -1}
In[10]:=
J=Jones[Link[5, Alternating, 1]][q]
Out[10]=  
 -(7/2)    2      -(3/2)      2                 3/2

q - ---- + q - ------- + Sqrt[q] - q

          5/2             Sqrt[q]
q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{}
In[12]:=
A2Invariant[Link[5, Alternating, 1]][q]
Out[12]=  
     -12    -8    -6   2     -2    2    4    6

2 - q + q + q + -- + q + q + q + q

                       4
q
In[13]:=
Kauffman[Link[5, Alternating, 1]][a, z]
Out[13]=  
                                                   3
    1    a   2 z              3      2    4  2   z         3

1 - --- - - + --- + 4 a z + 2 a z + z - a z - -- - 3 a z -

   a z   z    a                                  a

    3  3    4    2  4
2 a z - z - a z
In[14]:=
{Vassiliev[2][Link[5, Alternating, 1]], Vassiliev[3][Link[5, Alternating, 1]]}
Out[14]=  
    1

{0, -}

2
In[15]:=
Kh[Link[5, Alternating, 1]][q, t]
Out[15]=  
    2      1       1       1      1          4  2

2 + -- + ----- + ----- + ----- + ---- + t + q t

    2    8  3    6  2    4  2    2
q q t q t q t q t