L5a1
|
|
|
|
Visit L5a1's page at Knotilus!
Visit L5a1's page at the original Knot Atlas! |
| L5a1 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5^2_1} in Rolfsen's Table of Links. It is also known as the "Whitehead Link". |
Wolfgang Staubach's medallion based on this [1] | ||||
A kolam with two cycles, one of which is twisted[2] |
Knot presentations
| Planar diagram presentation | X6172 X10,7,5,8 X4516 X2,10,3,9 X8493 |
| Gauss code | {1, -4, 5, -3}, {3, -1, 2, -5, 4, -2} |
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{(u-1) (v-1)}{\sqrt{u} \sqrt{v}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{q^{7/2}}-\frac{2}{q^{5/2}}-q^{3/2}+\frac{1}{q^{3/2}}+\sqrt{q}-\frac{2}{\sqrt{q}}} (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z a^3+z^3 a+2 z a+a z^{-1} -z a^{-1} - a^{-1} z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^2 a^4-2 z^3 a^3+2 z a^3-z^4 a^2-3 z^3 a+4 z a-a z^{-1} -z^4+z^2+1-z^3 a^{-1} +2 z a^{-1} - a^{-1} z^{-1} } (db) |
Vassiliev invariants
| V2 and V3: | (0, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}} ) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -1 is the signature of L5a1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Link[5, Alternating, 1]] |
Out[2]= | 5 |
In[3]:= | PD[Link[5, Alternating, 1]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 7, 5, 8], X[4, 5, 1, 6], X[2, 10, 3, 9], X[8, 4, 9, 3]] |
In[4]:= | GaussCode[Link[5, Alternating, 1]] |
Out[4]= | GaussCode[{1, -4, 5, -3}, {3, -1, 2, -5, 4, -2}] |
In[5]:= | BR[Link[5, Alternating, 1]] |
Out[5]= | BR[Link[5, Alternating, 1]] |
In[6]:= | alex = Alexander[Link[5, Alternating, 1]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[5, Alternating, 1]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[5, Alternating, 1]], KnotSignature[Link[5, Alternating, 1]]} |
Out[9]= | {Infinity, -1} |
In[10]:= | J=Jones[Link[5, Alternating, 1]][q] |
Out[10]= | -(7/2) 2 -(3/2) 2 3/2 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[5, Alternating, 1]][q] |
Out[12]= | -12 -8 -6 2 -2 2 4 6 |
In[13]:= | Kauffman[Link[5, Alternating, 1]][a, z] |
Out[13]= | 31 a 2 z 3 2 4 2 z 3 |
In[14]:= | {Vassiliev[2][Link[5, Alternating, 1]], Vassiliev[3][Link[5, Alternating, 1]]} |
Out[14]= | 1 |
In[15]:= | Kh[Link[5, Alternating, 1]][q, t] |
Out[15]= | 2 1 1 1 1 4 2 |








