L8n6
From Knot Atlas
Jump to navigationJump to search
|
|
|
|
Visit L8n6's page at Knotilus!
Visit L8n6's page at the original Knot Atlas! |
| L8n6 is [math]\displaystyle{ 8^3_{10} }[/math] in the Rolfsen table of links. |
Knot presentations
| Planar diagram presentation | X6172 X10,3,11,4 X11,16,12,13 X7,14,8,15 X13,8,14,9 X15,12,16,5 X2536 X4,9,1,10 |
| Gauss code | {1, -7, 2, -8}, {-5, 4, -6, 3}, {7, -1, -4, 5, 8, -2, -3, 6} |
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(3)-1) (t(3)+1) (t(1) t(2)+t(3))}{\sqrt{t(1)} \sqrt{t(2)} t(3)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{-2} + q^{-6} + q^{-7} + q^{-9} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^{10} z^{-2} -2 a^8 z^{-2} -2 a^8+a^6 z^{-2} +z^4 a^4+4 z^2 a^4+2 a^4 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{10} z^6-6 a^{10} z^4+10 a^{10} z^2+a^{10} z^{-2} -6 a^{10}+a^9 z^5-6 a^9 z^3+8 a^9 z-2 a^9 z^{-1} +a^8 z^6-7 a^8 z^4+14 a^8 z^2+2 a^8 z^{-2} -9 a^8+a^7 z^5-6 a^7 z^3+8 a^7 z-2 a^7 z^{-1} +a^6 z^{-2} -2 a^6+a^4 z^4-4 a^4 z^2+2 a^4 }[/math] (db) |
Vassiliev invariants
| V2 and V3: | (0, [math]\displaystyle{ \frac{106}{3} }[/math]) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-3 is the signature of L8n6. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Link[8, NonAlternating, 6]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, NonAlternating, 6]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[11, 16, 12, 13], X[7, 14, 8, 15], X[13, 8, 14, 9], X[15, 12, 16, 5], X[2, 5, 3, 6], X[4, 9, 1, 10]] |
In[4]:= | GaussCode[Link[8, NonAlternating, 6]] |
Out[4]= | GaussCode[{1, -7, 2, -8}, {-5, 4, -6, 3}, {7, -1, -4, 5, 8, -2, -3, 6}] |
In[5]:= | BR[Link[8, NonAlternating, 6]] |
Out[5]= | BR[Link[8, NonAlternating, 6]] |
In[6]:= | alex = Alexander[Link[8, NonAlternating, 6]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, NonAlternating, 6]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, NonAlternating, 6]], KnotSignature[Link[8, NonAlternating, 6]]} |
Out[9]= | {Infinity, -3} |
In[10]:= | J=Jones[Link[8, NonAlternating, 6]][q] |
Out[10]= | -9 -7 -6 -2 q + q + q + q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, NonAlternating, 6]][q] |
Out[12]= | -30 3 4 5 4 3 2 -16 -14 -10 -8 |
In[13]:= | Kauffman[Link[8, NonAlternating, 6]][a, z] |
Out[13]= | 6 8 10 7 94 6 8 10 a 2 a a 2 a 2 a 7 |
In[14]:= | {Vassiliev[2][Link[8, NonAlternating, 6]], Vassiliev[3][Link[8, NonAlternating, 6]]} |
Out[14]= | 106 |
In[15]:= | Kh[Link[8, NonAlternating, 6]][q, t] |
Out[15]= | -5 -3 1 1 1 1 2 3 |


