In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[6, Alternating, 2]] |
Out[2]= | 6 |
In[3]:= | PD[Link[6, Alternating, 2]] |
Out[3]= | PD[X[8, 1, 9, 2], X[12, 5, 7, 6], X[10, 3, 11, 4], X[4, 11, 5, 12],
X[2, 7, 3, 8], X[6, 9, 1, 10]] |
In[4]:= | GaussCode[Link[6, Alternating, 2]] |
Out[4]= | GaussCode[{1, -5, 3, -4, 2, -6}, {5, -1, 6, -3, 4, -2}] |
In[5]:= | BR[Link[6, Alternating, 2]] |
Out[5]= | BR[Link[6, Alternating, 2]] |
In[6]:= | alex = Alexander[Link[6, Alternating, 2]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[6, Alternating, 2]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[6, Alternating, 2]], KnotSignature[Link[6, Alternating, 2]]} |
Out[9]= | {Infinity, -3} |
In[10]:= | J=Jones[Link[6, Alternating, 2]][q] |
Out[10]= | -(15/2) -(13/2) 2 2 2 -(5/2) -(3/2)
-q + q - ----- + ---- - ---- + q - q
11/2 9/2 7/2
q q q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[6, Alternating, 2]][q] |
Out[12]= | -24 -22 -20 2 -16 -14 -8 -4
q + q + q + --- + q + q + q + q
18
q |
In[13]:= | Kauffman[Link[6, Alternating, 2]][a, z] |
Out[13]= | 5 7
6 a a 3 5 7 9 4 2 6 2
-a + -- + -- + 2 a z - 3 a z - 3 a z + 2 a z + a z + 2 a z +
z z
8 2 3 3 5 3 7 3 9 3 4 4 6 4 8 4
a z - a z + 2 a z + 2 a z - a z - a z - 2 a z - a z -
5 5 7 5
a z - a z |
In[14]:= | {Vassiliev[2][Link[6, Alternating, 2]], Vassiliev[3][Link[6, Alternating, 2]]} |
Out[14]= | 161
{0, -(---)}
16 |
In[15]:= | Kh[Link[6, Alternating, 2]][q, t] |
Out[15]= | -4 -2 1 1 1 1 1 1
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
16 6 14 6 14 5 12 4 10 4 10 3
q t q t q t q t q t q t
1 1 1 1
----- + ----- + ----- + ----
8 3 8 2 6 2 4
q t q t q t q t |