In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... |
In[2]:= | Crossings[Link[8, Alternating, 19]] |
Out[2]= | 8 |
In[3]:= | PD[Link[8, Alternating, 19]] |
Out[3]= | PD[X[6, 1, 7, 2], X[12, 4, 13, 3], X[14, 5, 15, 6], X[8, 12, 9, 11],
X[16, 8, 11, 7], X[10, 13, 5, 14], X[2, 9, 3, 10], X[4, 16, 1, 15]] |
In[4]:= | GaussCode[Link[8, Alternating, 19]] |
Out[4]= | GaussCode[{1, -7, 2, -8}, {3, -1, 5, -4, 7, -6}, {4, -2, 6, -3, 8, -5}] |
In[5]:= | BR[Link[8, Alternating, 19]] |
Out[5]= | BR[Link[8, Alternating, 19]] |
In[6]:= | alex = Alexander[Link[8, Alternating, 19]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[8, Alternating, 19]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[8, Alternating, 19]], KnotSignature[Link[8, Alternating, 19]]} |
Out[9]= | {Infinity, 0} |
In[10]:= | J=Jones[Link[8, Alternating, 19]][q] |
Out[10]= | -4 3 5 5 2 3 4
8 + q - -- + -- - - - 5 q + 5 q - 3 q + q
3 2 q
q q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[8, Alternating, 19]][q] |
Out[12]= | -12 -10 -8 -6 2 7 2 4 6 8 10
5 + q - q + q + q + -- + -- + 7 q + 2 q + q + q - q +
4 2
q q
12
q |
In[13]:= | Kauffman[Link[8, Alternating, 19]][a, z] |
Out[13]= | 2
2 2 2 1 a 2 2 a 2 z 2
-3 - -- - 2 a + -- + ----- + -- - --- - --- + --- + 2 a z + 12 z -
2 2 2 2 2 a z z a
a z a z z
2 2 3 3
z 5 z 2 2 4 2 4 z 4 z 3 3 3
-- + ---- + 5 a z - a z - ---- - ---- - 4 a z - 4 a z -
4 2 3 a
a a a
4 4 5 5
4 z 7 z 2 4 4 4 3 z z 5 3 5
16 z + -- - ---- - 7 a z + a z + ---- + -- + a z + 3 a z +
4 2 3 a
a a a
6 7
6 4 z 2 6 2 z 7
8 z + ---- + 4 a z + ---- + 2 a z
2 a
a |
In[14]:= | {Vassiliev[2][Link[8, Alternating, 19]], Vassiliev[3][Link[8, Alternating, 19]]} |
Out[14]= | {0, 0} |
In[15]:= | Kh[Link[8, Alternating, 19]][q, t] |
Out[15]= | 5 1 2 1 3 3 3 2
- + 5 q + ----- + ----- + ----- + ----- + ----- + ---- + --- + 2 q t +
q 9 4 7 3 5 3 5 2 3 2 3 q t
q t q t q t q t q t q t
3 3 2 5 2 5 3 7 3 9 4
3 q t + 3 q t + 3 q t + q t + 2 q t + q t |