T(5,2)

From Knot Atlas
Revision as of 19:44, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

T(3,2).jpg

T(3,2)

T(7,2).jpg

T(7,2)

T(5,2).jpg Visit [[[:Template:KnotilusURL]] T(5,2)'s page] at Knotilus!

Visit T(5,2)'s page at the original Knot Atlas!

An interlaced pentagram, this is known variously as the "Cinquefoil Knot", after certain herbs and shrubs of the rose family which have 5-lobed leaves and 5-petaled flowers (see e.g. [4]),

as the "Pentafoil Knot" (visit Bert Jagers' pentafoil page), as the "Double Overhand Knot", as 5_1, or finally as the torus knot T(5,2).

When taken off the post the strangle knot (hitch) of practical knot tying deforms to 5_1




A kolam of a 2x3 dot array
The VISA Interlink Logo [1]
Version of the US bicentennial emblem
A pentagonal table by Bob Mackay [2]
The Utah State Parks logo
As impossible object ("Penrose" pentagram)
Folded ribbon which is single-sided (more complex version of Möbius Strip).
Non-pentagonal shape.
Pentagram of circles.
Alternate pentagram of intersecting circles.
3D-looking rendition.
Partial view of US bicentennial logo on a shirt seen in Lisboa [3]
Non-prime knot with two 5_1 configurations on a closed loop.
Knotted epitrochoid
Sum of two 5_1s, Vienna, orthodox church

This sentence was last edited by Dror. Sometime later, Scott added this sentence.

Knot presentations

Planar diagram presentation X3948 X9,5,10,4 X5,1,6,10 X1726 X7382
Gauss code -4, 5, -1, 2, -3, 4, -5, 1, -2, 3
Dowker-Thistlethwaite code 6 8 10 2 4
Conway Notation Data:T(5,2)/Conway Notation

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 5, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(5,2)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(5,2)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3: (3, 5)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:T(5,2)/V 2,1 Data:T(5,2)/V 3,1 Data:T(5,2)/V 4,1 Data:T(5,2)/V 4,2 Data:T(5,2)/V 4,3 Data:T(5,2)/V 5,1 Data:T(5,2)/V 5,2 Data:T(5,2)/V 5,3 Data:T(5,2)/V 5,4 Data:T(5,2)/V 6,1 Data:T(5,2)/V 6,2 Data:T(5,2)/V 6,3 Data:T(5,2)/V 6,4 Data:T(5,2)/V 6,5 Data:T(5,2)/V 6,6 Data:T(5,2)/V 6,7 Data:T(5,2)/V 6,8 Data:T(5,2)/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of T(5,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
012345χ
15     1-1
13      0
11   11 0
9      0
7  1   1
51     1
31     1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[TorusKnot[5, 2]]
Out[2]=  
5
In[3]:=
PD[TorusKnot[5, 2]]
Out[3]=  
PD[X[3, 9, 4, 8], X[9, 5, 10, 4], X[5, 1, 6, 10], X[1, 7, 2, 6], 
  X[7, 3, 8, 2]]
In[4]:=
GaussCode[TorusKnot[5, 2]]
Out[4]=  
GaussCode[-4, 5, -1, 2, -3, 4, -5, 1, -2, 3]
In[5]:=
BR[TorusKnot[5, 2]]
Out[5]=  
BR[2, {1, 1, 1, 1, 1}]
In[6]:=
alex = Alexander[TorusKnot[5, 2]][t]
Out[6]=  
               -2        1                                 2

1 + Alternating - ----------- - Alternating + Alternating

Alternating
In[7]:=
Conway[TorusKnot[5, 2]][z]
Out[7]=  
       2    4
1 + 3 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[5, 1], Knot[10, 132]}
In[9]:=
{KnotDet[TorusKnot[5, 2]], KnotSignature[TorusKnot[5, 2]]}
Out[9]=  
{5, 4}
In[10]:=
J=Jones[TorusKnot[5, 2]][q]
Out[10]=  
 2    4    5    6    7
q  + q  - q  + q  - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[5, 1], Knot[10, 132]}
In[12]:=
A2Invariant[TorusKnot[5, 2]][q]
Out[12]=  
 6    8      10    12    14    18    20    22
q  + q  + 2 q   + q   + q   - q   - q   - q
In[13]:=
Kauffman[TorusKnot[5, 2]][a, z]
Out[13]=  
                           2      2      2    3    3    4    4

2 3 z z 2 z z 3 z 4 z z z z z -- + -- + -- - -- - --- + -- - ---- - ---- + -- + -- + -- + --

6    4    9    7    5     8     6      4     7    5    6    4
a a a a a a a a a a a a
In[14]:=
{Vassiliev[2][TorusKnot[5, 2]], Vassiliev[3][TorusKnot[5, 2]]}
Out[14]=  
{0, 5}
In[15]:=
Kh[TorusKnot[5, 2]][q, t]
Out[15]=  
 3    5              2  7              3  11              4  11

q + q + Alternating q + Alternating q + Alternating q +

            5  15
Alternating q