T(17,3)
|
|
Visit [[[:Template:KnotilusURL]] T(17,3)'s page] at Knotilus!
Visit T(17,3)'s page at the original Knot Atlas! | |
T(17,3) Quick Notes |
T(17,3) Further Notes and Views
Knot presentations
Planar diagram presentation | X66,44,67,43 X21,45,22,44 X22,68,23,67 X45,1,46,68 X46,24,47,23 X1,25,2,24 X2,48,3,47 X25,49,26,48 X26,4,27,3 X49,5,50,4 X50,28,51,27 X5,29,6,28 X6,52,7,51 X29,53,30,52 X30,8,31,7 X53,9,54,8 X54,32,55,31 X9,33,10,32 X10,56,11,55 X33,57,34,56 X34,12,35,11 X57,13,58,12 X58,36,59,35 X13,37,14,36 X14,60,15,59 X37,61,38,60 X38,16,39,15 X61,17,62,16 X62,40,63,39 X17,41,18,40 X18,64,19,63 X41,65,42,64 X42,20,43,19 X65,21,66,20 |
Gauss code | -6, -7, 9, 10, -12, -13, 15, 16, -18, -19, 21, 22, -24, -25, 27, 28, -30, -31, 33, 34, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -21, 23, 24, -26, -27, 29, 30, -32, -33, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14, -16, -17, 19, 20, -22, -23, 25, 26, -28, -29, 31, 32, -34, -1, 3, 4 |
Dowker-Thistlethwaite code | 24 -26 28 -30 32 -34 36 -38 40 -42 44 -46 48 -50 52 -54 56 -58 60 -62 64 -66 68 -2 4 -6 8 -10 12 -14 16 -18 20 -22 |
Conway Notation | Data:T(17,3)/Conway Notation |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(17,3)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 1, 24 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Data:T(17,3)/HOMFLYPT Polynomial |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:T(17,3)/Kauffman Polynomial |
Vassiliev invariants
V2 and V3: | (96, 816) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 24 is the signature of T(17,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[17, 3]] |
Out[2]= | 34 |
In[3]:= | PD[TorusKnot[17, 3]] |
Out[3]= | PD[X[66, 44, 67, 43], X[21, 45, 22, 44], X[22, 68, 23, 67],X[45, 1, 46, 68], X[46, 24, 47, 23], X[1, 25, 2, 24], X[2, 48, 3, 47], X[25, 49, 26, 48], X[26, 4, 27, 3], X[49, 5, 50, 4], X[50, 28, 51, 27], X[5, 29, 6, 28], X[6, 52, 7, 51], X[29, 53, 30, 52], X[30, 8, 31, 7], X[53, 9, 54, 8], X[54, 32, 55, 31], X[9, 33, 10, 32], X[10, 56, 11, 55], X[33, 57, 34, 56], X[34, 12, 35, 11], X[57, 13, 58, 12], X[58, 36, 59, 35], X[13, 37, 14, 36], X[14, 60, 15, 59], X[37, 61, 38, 60], X[38, 16, 39, 15], X[61, 17, 62, 16], X[62, 40, 63, 39], X[17, 41, 18, 40], X[18, 64, 19, 63],X[41, 65, 42, 64], X[42, 20, 43, 19], X[65, 21, 66, 20]] |
In[4]:= | GaussCode[TorusKnot[17, 3]] |
Out[4]= | GaussCode[-6, -7, 9, 10, -12, -13, 15, 16, -18, -19, 21, 22, -24, -25,27, 28, -30, -31, 33, 34, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -21, 23, 24, -26, -27, 29, 30, -32, -33, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14, -16, -17, 19, 20, -22, -23, 25, 26, -28, -29, 31,32, -34, -1, 3, 4] |
In[5]:= | BR[TorusKnot[17, 3]] |
Out[5]= | BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2}] |
In[6]:= | alex = Alexander[TorusKnot[17, 3]][t] |
Out[6]= | -16 -15 -13 |
In[7]:= | Conway[TorusKnot[17, 3]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[17, 3]], KnotSignature[TorusKnot[17, 3]]} |
Out[9]= | {1, 24} |
In[10]:= | J=Jones[TorusKnot[17, 3]][q] |
Out[10]= | 16 18 34 q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[17, 3]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[17, 3]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[17, 3]], Vassiliev[3][TorusKnot[17, 3]]} |
Out[14]= | {0, 816} |
In[15]:= | Kh[TorusKnot[17, 3]][q, t] |
Out[15]= | 31 33 2 35 4 37 3 39 |