T(14,3)
|
|
Visit [[[:Template:KnotilusURL]] T(14,3)'s page] at Knotilus!
Visit T(14,3)'s page at the original Knot Atlas! | |
T(14,3) Quick Notes |
T(14,3) Further Notes and Views
Knot presentations
Planar diagram presentation | X3,41,4,40 X22,42,23,41 X23,5,24,4 X42,6,43,5 X43,25,44,24 X6,26,7,25 X7,45,8,44 X26,46,27,45 X27,9,28,8 X46,10,47,9 X47,29,48,28 X10,30,11,29 X11,49,12,48 X30,50,31,49 X31,13,32,12 X50,14,51,13 X51,33,52,32 X14,34,15,33 X15,53,16,52 X34,54,35,53 X35,17,36,16 X54,18,55,17 X55,37,56,36 X18,38,19,37 X19,1,20,56 X38,2,39,1 X39,21,40,20 X2,22,3,21 |
Gauss code | 26, -28, -1, 3, 4, -6, -7, 9, 10, -12, -13, 15, 16, -18, -19, 21, 22, -24, -25, 27, 28, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -21, 23, 24, -26, -27, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14, -16, -17, 19, 20, -22, -23, 25 |
Dowker-Thistlethwaite code | 38 -40 42 -44 46 -48 50 -52 54 -56 2 -4 6 -8 10 -12 14 -16 18 -20 22 -24 26 -28 30 -32 34 -36 |
Conway Notation | Data:T(14,3)/Conway Notation |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(14,3)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 3, 18 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Data:T(14,3)/HOMFLYPT Polynomial |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:T(14,3)/Kauffman Polynomial |
Vassiliev invariants
V2 and V3: | (65, 455) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 18 is the signature of T(14,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[14, 3]] |
Out[2]= | 28 |
In[3]:= | PD[TorusKnot[14, 3]] |
Out[3]= | PD[X[3, 41, 4, 40], X[22, 42, 23, 41], X[23, 5, 24, 4],X[42, 6, 43, 5], X[43, 25, 44, 24], X[6, 26, 7, 25], X[7, 45, 8, 44], X[26, 46, 27, 45], X[27, 9, 28, 8], X[46, 10, 47, 9], X[47, 29, 48, 28], X[10, 30, 11, 29], X[11, 49, 12, 48], X[30, 50, 31, 49], X[31, 13, 32, 12], X[50, 14, 51, 13], X[51, 33, 52, 32], X[14, 34, 15, 33], X[15, 53, 16, 52], X[34, 54, 35, 53], X[35, 17, 36, 16], X[54, 18, 55, 17], X[55, 37, 56, 36], X[18, 38, 19, 37], X[19, 1, 20, 56],X[38, 2, 39, 1], X[39, 21, 40, 20], X[2, 22, 3, 21]] |
In[4]:= | GaussCode[TorusKnot[14, 3]] |
Out[4]= | GaussCode[26, -28, -1, 3, 4, -6, -7, 9, 10, -12, -13, 15, 16, -18, -19,21, 22, -24, -25, 27, 28, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -21, 23, 24, -26, -27, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14,-16, -17, 19, 20, -22, -23, 25] |
In[5]:= | BR[TorusKnot[14, 3]] |
Out[5]= | BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2}] |
In[6]:= | alex = Alexander[TorusKnot[14, 3]][t] |
Out[6]= | -13 -12 -10 -9 |
In[7]:= | Conway[TorusKnot[14, 3]][z] |
Out[7]= | 2 4 6 8 10 12 |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[14, 3]], KnotSignature[TorusKnot[14, 3]]} |
Out[9]= | {3, 18} |
In[10]:= | J=Jones[TorusKnot[14, 3]][q] |
Out[10]= | 13 15 28 q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[14, 3]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[14, 3]][a, z] |
Out[13]= | NotAvailable |
In[14]:= | {Vassiliev[2][TorusKnot[14, 3]], Vassiliev[3][TorusKnot[14, 3]]} |
Out[14]= | {0, 455} |
In[15]:= | Kh[TorusKnot[14, 3]][q, t] |
Out[15]= | 25 27 2 29 4 31 3 33 |