T(8,3)
|
|
![]() |
Visit [[[:Template:KnotilusURL]] T(8,3)'s page] at Knotilus!
Visit T(8,3)'s page at the original Knot Atlas! |
T(8,3) Quick Notes |
![]() Banco Internacional do Funchal [1] |
Knot presentations
Planar diagram presentation | X11,1,12,32 X22,2,23,1 X23,13,24,12 X2,14,3,13 X3,25,4,24 X14,26,15,25 X15,5,16,4 X26,6,27,5 X27,17,28,16 X6,18,7,17 X7,29,8,28 X18,30,19,29 X19,9,20,8 X30,10,31,9 X31,21,32,20 X10,22,11,21 |
Gauss code | 2, -4, -5, 7, 8, -10, -11, 13, 14, -16, -1, 3, 4, -6, -7, 9, 10, -12, -13, 15, 16, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 1 |
Dowker-Thistlethwaite code | 22 -24 26 -28 30 -32 2 -4 6 -8 10 -12 14 -16 18 -20 |
Conway Notation | Data:T(8,3)/Conway Notation |
Polynomial invariants
Vassiliev invariants
V2 and V3: | (21, 84) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 10 is the signature of T(8,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[TorusKnot[8, 3]] |
Out[2]= | 16 |
In[3]:= | PD[TorusKnot[8, 3]] |
Out[3]= | PD[X[11, 1, 12, 32], X[22, 2, 23, 1], X[23, 13, 24, 12],X[2, 14, 3, 13], X[3, 25, 4, 24], X[14, 26, 15, 25], X[15, 5, 16, 4], X[26, 6, 27, 5], X[27, 17, 28, 16], X[6, 18, 7, 17], X[7, 29, 8, 28], X[18, 30, 19, 29], X[19, 9, 20, 8], X[30, 10, 31, 9],X[31, 21, 32, 20], X[10, 22, 11, 21]] |
In[4]:= | GaussCode[TorusKnot[8, 3]] |
Out[4]= | GaussCode[2, -4, -5, 7, 8, -10, -11, 13, 14, -16, -1, 3, 4, -6, -7, 9, 10, -12, -13, 15, 16, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 1] |
In[5]:= | BR[TorusKnot[8, 3]] |
Out[5]= | BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2}] |
In[6]:= | alex = Alexander[TorusKnot[8, 3]][t] |
Out[6]= | -7 -6 -4 -3 |
In[7]:= | Conway[TorusKnot[8, 3]][z] |
Out[7]= | 2 4 6 8 10 12 14 1 + 21 z + 105 z + 189 z + 157 z + 65 z + 13 z + z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[TorusKnot[8, 3]], KnotSignature[TorusKnot[8, 3]]} |
Out[9]= | {3, 10} |
In[10]:= | J=Jones[TorusKnot[8, 3]][q] |
Out[10]= | 7 9 16 q + q - q |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[TorusKnot[8, 3]][q] |
Out[12]= | NotAvailable |
In[13]:= | Kauffman[TorusKnot[8, 3]][a, z] |
Out[13]= | 2 2 2 3 |
In[14]:= | {Vassiliev[2][TorusKnot[8, 3]], Vassiliev[3][TorusKnot[8, 3]]} |
Out[14]= | {0, 84} |
In[15]:= | Kh[TorusKnot[8, 3]][q, t] |
Out[15]= | 13 15 2 17 4 19 3 21 |