T(9,2)

From Knot Atlas
Revision as of 19:45, 28 August 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

T(4,3).jpg

T(4,3)

T(5,3).jpg

T(5,3)

T(9,2).jpg Visit [[[:Template:KnotilusURL]] T(9,2)'s page] at Knotilus!

Visit T(9,2)'s page at the original Knot Atlas!

See also 9_1.


T(9,2) Further Notes and Views

Knot presentations

Planar diagram presentation X7,17,8,16 X17,9,18,8 X9,1,10,18 X1,11,2,10 X11,3,12,2 X3,13,4,12 X13,5,14,4 X5,15,6,14 X15,7,16,6
Gauss code -4, 5, -6, 7, -8, 9, -1, 2, -3, 4, -5, 6, -7, 8, -9, 1, -2, 3
Dowker-Thistlethwaite code 10 12 14 16 18 2 4 6 8
Conway Notation Data:T(9,2)/Conway Notation

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 9, 8 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(9,2)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(9,2)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3: (10, 30)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:T(9,2)/V 2,1 Data:T(9,2)/V 3,1 Data:T(9,2)/V 4,1 Data:T(9,2)/V 4,2 Data:T(9,2)/V 4,3 Data:T(9,2)/V 5,1 Data:T(9,2)/V 5,2 Data:T(9,2)/V 5,3 Data:T(9,2)/V 5,4 Data:T(9,2)/V 6,1 Data:T(9,2)/V 6,2 Data:T(9,2)/V 6,3 Data:T(9,2)/V 6,4 Data:T(9,2)/V 6,5 Data:T(9,2)/V 6,6 Data:T(9,2)/V 6,7 Data:T(9,2)/V 6,8 Data:T(9,2)/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 8 is the signature of T(9,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123456789χ
27         1-1
25          0
23       11 0
21          0
19     11   0
17          0
15   11     0
13          0
11  1       1
91         1
71         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[TorusKnot[9, 2]]
Out[2]=  
9
In[3]:=
PD[TorusKnot[9, 2]]
Out[3]=  
PD[X[7, 17, 8, 16], X[17, 9, 18, 8], X[9, 1, 10, 18], X[1, 11, 2, 10], 
 X[11, 3, 12, 2], X[3, 13, 4, 12], X[13, 5, 14, 4], X[5, 15, 6, 14], 

X[15, 7, 16, 6]]
In[4]:=
GaussCode[TorusKnot[9, 2]]
Out[4]=  
GaussCode[-4, 5, -6, 7, -8, 9, -1, 2, -3, 4, -5, 6, -7, 8, -9, 1, -2, 3]
In[5]:=
BR[TorusKnot[9, 2]]
Out[5]=  
BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1}]
In[6]:=
alex = Alexander[TorusKnot[9, 2]][t]
Out[6]=  
               -4              -3              -2        1

1 + Alternating - Alternating + Alternating - ----------- -

                                                   Alternating

                          2              3              4
Alternating + Alternating - Alternating + Alternating
In[7]:=
Conway[TorusKnot[9, 2]][z]
Out[7]=  
        2       4      6    8
1 + 10 z  + 15 z  + 7 z  + z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[9, 1]}
In[9]:=
{KnotDet[TorusKnot[9, 2]], KnotSignature[TorusKnot[9, 2]]}
Out[9]=  
{9, 8}
In[10]:=
J=Jones[TorusKnot[9, 2]][q]
Out[10]=  
 4    6    7    8    9    10    11    12    13
q  + q  - q  + q  - q  + q   - q   + q   - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[9, 1]}
In[12]:=
A2Invariant[TorusKnot[9, 2]][q]
Out[12]=  
 14    16      18    20    22    34    36    38
q   + q   + 2 q   + q   + q   - q   - q   - q
In[13]:=
Kauffman[TorusKnot[9, 2]][a, z]
Out[13]=  
                                          2       2      2       2
4    5     z     z     z     z    4 z   z     2 z    3 z    14 z

--- + -- + --- - --- + --- - --- - --- + --- - ---- + ---- - ----- -

10    8    17    15    13    11    9     16    14     12      10

a a a a a a a a a a a

     2    3       3      3       3    4       4       4       4
 20 z    z     3 z    6 z    10 z    z     4 z    16 z    21 z
 ----- + --- - ---- + ---- + ----- + --- - ---- + ----- + ----- + 
   8      15    13     11      9      14    12      10      8
  a      a     a      a       a      a     a       a       a

  5       5      5    6       6      6    7     7    8     8
 z     5 z    6 z    z     7 z    8 z    z     z    z     z
 --- - ---- - ---- + --- - ---- - ---- + --- + -- + --- + --
  13    11      9     12    10      8     11    9    10    8
a a a a a a a a a a
In[14]:=
{Vassiliev[2][TorusKnot[9, 2]], Vassiliev[3][TorusKnot[9, 2]]}
Out[14]=  
{0, 30}
In[15]:=
Kh[TorusKnot[9, 2]][q, t]
Out[15]=  
 7    9              2  11              3  15              4  15

q + q + Alternating q + Alternating q + Alternating q +

            5  19              6  19              7  23
 Alternating  q   + Alternating  q   + Alternating  q   + 

            8  23              9  27
Alternating q + Alternating q