K11a66
|
|
|
|
Visit K11a66's page at Knotilus!
Visit K11a66's page at the original Knot Atlas! |
| K11a66 Quick Notes |
K11a66 Further Notes and Views
Knot presentations
| Planar diagram presentation | X4251 X8394 X16,5,17,6 X12,8,13,7 X2,9,3,10 X18,12,19,11 X20,13,21,14 X22,15,1,16 X10,18,11,17 X6,19,7,20 X14,21,15,22 |
| Gauss code | 1, -5, 2, -1, 3, -10, 4, -2, 5, -9, 6, -4, 7, -11, 8, -3, 9, -6, 10, -7, 11, -8 |
| Dowker-Thistlethwaite code | 4 8 16 12 2 18 20 22 10 6 14 |
| Conway Notation | [.30.21.2] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^8-2 z^6+z^4+2 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 119, -2 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^3-4 q^2+8 q-12+17 q^{-1} -19 q^{-2} +19 q^{-3} -16 q^{-4} +12 q^{-5} -7 q^{-6} +3 q^{-7} - q^{-8} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^2 z^8+2 a^4 z^6-5 a^2 z^6+z^6-a^6 z^4+8 a^4 z^4-9 a^2 z^4+3 z^4-3 a^6 z^2+10 a^4 z^2-7 a^2 z^2+2 z^2-2 a^6+4 a^4-2 a^2+1} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 a^4 z^{10}+2 a^2 z^{10}+5 a^5 z^9+11 a^3 z^9+6 a z^9+6 a^6 z^8+7 a^4 z^8+8 a^2 z^8+7 z^8+5 a^7 z^7-6 a^5 z^7-28 a^3 z^7-13 a z^7+4 z^7 a^{-1} +3 a^8 z^6-9 a^6 z^6-26 a^4 z^6-35 a^2 z^6+z^6 a^{-2} -20 z^6+a^9 z^5-7 a^7 z^5+5 a^5 z^5+29 a^3 z^5+6 a z^5-10 z^5 a^{-1} -5 a^8 z^4+8 a^6 z^4+36 a^4 z^4+41 a^2 z^4-2 z^4 a^{-2} +16 z^4-2 a^9 z^3+2 a^7 z^3-3 a^5 z^3-12 a^3 z^3-a z^3+4 z^3 a^{-1} +2 a^8 z^2-7 a^6 z^2-21 a^4 z^2-17 a^2 z^2-5 z^2+a^9 z+2 a^3 z+a z+2 a^6+4 a^4+2 a^2+1} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{24}-2 q^{18}+3 q^{16}-2 q^{14}+2 q^{12}+2 q^{10}-2 q^8+4 q^6-4 q^4+3 q^2- q^{-2} +2 q^{-4} -2 q^{-6} + q^{-8} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{128}-2 q^{126}+5 q^{124}-8 q^{122}+9 q^{120}-8 q^{118}+q^{116}+13 q^{114}-30 q^{112}+48 q^{110}-58 q^{108}+49 q^{106}-22 q^{104}-26 q^{102}+86 q^{100}-138 q^{98}+166 q^{96}-158 q^{94}+93 q^{92}+8 q^{90}-140 q^{88}+268 q^{86}-338 q^{84}+321 q^{82}-195 q^{80}-17 q^{78}+243 q^{76}-408 q^{74}+439 q^{72}-312 q^{70}+66 q^{68}+200 q^{66}-367 q^{64}+359 q^{62}-166 q^{60}-109 q^{58}+341 q^{56}-418 q^{54}+280 q^{52}+13 q^{50}-346 q^{48}+586 q^{46}-611 q^{44}+417 q^{42}-53 q^{40}-338 q^{38}+616 q^{36}-692 q^{34}+539 q^{32}-221 q^{30}-147 q^{28}+437 q^{26}-537 q^{24}+432 q^{22}-158 q^{20}-154 q^{18}+360 q^{16}-388 q^{14}+209 q^{12}+79 q^{10}-342 q^8+475 q^6-401 q^4+155 q^2+161-417 q^{-2} +514 q^{-4} -431 q^{-6} +212 q^{-8} +43 q^{-10} -244 q^{-12} +335 q^{-14} -307 q^{-16} +202 q^{-18} -63 q^{-20} -51 q^{-22} +109 q^{-24} -122 q^{-26} +95 q^{-28} -53 q^{-30} +19 q^{-32} +9 q^{-34} -19 q^{-36} +18 q^{-38} -14 q^{-40} +7 q^{-42} -3 q^{-44} + q^{-46} } |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a66"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^8-2 z^6+z^4+2 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 119, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^3-4 q^2+8 q-12+17 q^{-1} -19 q^{-2} +19 q^{-3} -16 q^{-4} +12 q^{-5} -7 q^{-6} +3 q^{-7} - q^{-8} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^2 z^8+2 a^4 z^6-5 a^2 z^6+z^6-a^6 z^4+8 a^4 z^4-9 a^2 z^4+3 z^4-3 a^6 z^2+10 a^4 z^2-7 a^2 z^2+2 z^2-2 a^6+4 a^4-2 a^2+1} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 a^4 z^{10}+2 a^2 z^{10}+5 a^5 z^9+11 a^3 z^9+6 a z^9+6 a^6 z^8+7 a^4 z^8+8 a^2 z^8+7 z^8+5 a^7 z^7-6 a^5 z^7-28 a^3 z^7-13 a z^7+4 z^7 a^{-1} +3 a^8 z^6-9 a^6 z^6-26 a^4 z^6-35 a^2 z^6+z^6 a^{-2} -20 z^6+a^9 z^5-7 a^7 z^5+5 a^5 z^5+29 a^3 z^5+6 a z^5-10 z^5 a^{-1} -5 a^8 z^4+8 a^6 z^4+36 a^4 z^4+41 a^2 z^4-2 z^4 a^{-2} +16 z^4-2 a^9 z^3+2 a^7 z^3-3 a^5 z^3-12 a^3 z^3-a z^3+4 z^3 a^{-1} +2 a^8 z^2-7 a^6 z^2-21 a^4 z^2-17 a^2 z^2-5 z^2+a^9 z+2 a^3 z+a z+2 a^6+4 a^4+2 a^2+1} |
Vassiliev invariants
| V2 and V3: | (2, -4) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of K11a66. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[11, Alternating, 66]] |
Out[2]= | 11 |
In[3]:= | PD[Knot[11, Alternating, 66]] |
Out[3]= | PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[16, 5, 17, 6], X[12, 8, 13, 7],X[2, 9, 3, 10], X[18, 12, 19, 11], X[20, 13, 21, 14], X[22, 15, 1, 16], X[10, 18, 11, 17], X[6, 19, 7, 20],X[14, 21, 15, 22]] |
In[4]:= | GaussCode[Knot[11, Alternating, 66]] |
Out[4]= | GaussCode[1, -5, 2, -1, 3, -10, 4, -2, 5, -9, 6, -4, 7, -11, 8, -3, 9, -6, 10, -7, 11, -8] |
In[5]:= | BR[Knot[11, Alternating, 66]] |
Out[5]= | BR[Knot[11, Alternating, 66]] |
In[6]:= | alex = Alexander[Knot[11, Alternating, 66]][t] |
Out[6]= | -4 6 15 24 2 3 4 |
In[7]:= | Conway[Knot[11, Alternating, 66]][z] |
Out[7]= | 2 4 6 8 1 + 2 z + z - 2 z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[11, Alternating, 66], Knot[11, Alternating, 163]} |
In[9]:= | {KnotDet[Knot[11, Alternating, 66]], KnotSignature[Knot[11, Alternating, 66]]} |
Out[9]= | {119, -2} |
In[10]:= | J=Jones[Knot[11, Alternating, 66]][q] |
Out[10]= | -8 3 7 12 16 19 19 17 2 3 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[11, Alternating, 66], Knot[11, Alternating, 121]} |
In[12]:= | A2Invariant[Knot[11, Alternating, 66]][q] |
Out[12]= | -24 2 3 2 2 2 2 4 4 3 2 4 |
In[13]:= | Kauffman[Knot[11, Alternating, 66]][a, z] |
Out[13]= | 2 4 6 3 9 2 2 2 |
In[14]:= | {Vassiliev[2][Knot[11, Alternating, 66]], Vassiliev[3][Knot[11, Alternating, 66]]} |
Out[14]= | {0, -4} |
In[15]:= | Kh[Knot[11, Alternating, 66]][q, t] |
Out[15]= | 8 10 1 2 1 5 2 7 5 |


