K11a41
|
|
|
|
Visit K11a41's page at Knotilus!
Visit K11a41's page at the original Knot Atlas! |
| K11a41 Quick Notes |
K11a41 Further Notes and Views
Knot presentations
| Planar diagram presentation | X4251 X8493 X14,5,15,6 X2837 X18,10,19,9 X20,12,21,11 X16,13,17,14 X6,15,7,16 X22,18,1,17 X12,20,13,19 X10,22,11,21 |
| Gauss code | 1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -10, 7, -3, 8, -7, 9, -5, 10, -6, 11, -9 |
| Dowker-Thistlethwaite code | 4 8 14 2 18 20 16 6 22 12 10 |
| Conway Notation | [311,21,2+] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ 2 t^3-11 t^2+27 t-35+27 t^{-1} -11 t^{-2} +2 t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ 2 z^6+z^4+z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 115, 2 } |
| Jones polynomial | [math]\displaystyle{ q^9-3 q^8+6 q^7-11 q^6+15 q^5-18 q^4+19 q^3-16 q^2+13 q-8+4 q^{-1} - q^{-2} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^6 a^{-2} +z^6 a^{-4} +2 z^4 a^{-2} +2 z^4 a^{-4} -2 z^4 a^{-6} -z^4+2 z^2 a^{-2} +3 z^2 a^{-4} -4 z^2 a^{-6} +z^2 a^{-8} -z^2+ a^{-2} +2 a^{-4} -3 a^{-6} + a^{-8} }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^{10} a^{-4} +z^{10} a^{-6} +4 z^9 a^{-3} +7 z^9 a^{-5} +3 z^9 a^{-7} +7 z^8 a^{-2} +12 z^8 a^{-4} +9 z^8 a^{-6} +4 z^8 a^{-8} +7 z^7 a^{-1} +4 z^7 a^{-3} -6 z^7 a^{-5} +3 z^7 a^{-9} -8 z^6 a^{-2} -29 z^6 a^{-4} -27 z^6 a^{-6} -9 z^6 a^{-8} +z^6 a^{-10} +4 z^6+a z^5-11 z^5 a^{-1} -18 z^5 a^{-3} -12 z^5 a^{-5} -15 z^5 a^{-7} -9 z^5 a^{-9} +26 z^4 a^{-4} +28 z^4 a^{-6} +5 z^4 a^{-8} -3 z^4 a^{-10} -6 z^4-a z^3+4 z^3 a^{-1} +14 z^3 a^{-3} +20 z^3 a^{-5} +19 z^3 a^{-7} +8 z^3 a^{-9} +z^2 a^{-2} -10 z^2 a^{-4} -13 z^2 a^{-6} -2 z^2 a^{-8} +2 z^2 a^{-10} +2 z^2-z a^{-1} -3 z a^{-3} -7 z a^{-5} -8 z a^{-7} -3 z a^{-9} - a^{-2} +2 a^{-4} +3 a^{-6} + a^{-8} }[/math] |
| The A2 invariant | Data:K11a41/QuantumInvariant/A2/1,0 |
| The G2 invariant | Data:K11a41/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a41"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ 2 t^3-11 t^2+27 t-35+27 t^{-1} -11 t^{-2} +2 t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ 2 z^6+z^4+z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 115, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^9-3 q^8+6 q^7-11 q^6+15 q^5-18 q^4+19 q^3-16 q^2+13 q-8+4 q^{-1} - q^{-2} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^6 a^{-2} +z^6 a^{-4} +2 z^4 a^{-2} +2 z^4 a^{-4} -2 z^4 a^{-6} -z^4+2 z^2 a^{-2} +3 z^2 a^{-4} -4 z^2 a^{-6} +z^2 a^{-8} -z^2+ a^{-2} +2 a^{-4} -3 a^{-6} + a^{-8} }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^{10} a^{-4} +z^{10} a^{-6} +4 z^9 a^{-3} +7 z^9 a^{-5} +3 z^9 a^{-7} +7 z^8 a^{-2} +12 z^8 a^{-4} +9 z^8 a^{-6} +4 z^8 a^{-8} +7 z^7 a^{-1} +4 z^7 a^{-3} -6 z^7 a^{-5} +3 z^7 a^{-9} -8 z^6 a^{-2} -29 z^6 a^{-4} -27 z^6 a^{-6} -9 z^6 a^{-8} +z^6 a^{-10} +4 z^6+a z^5-11 z^5 a^{-1} -18 z^5 a^{-3} -12 z^5 a^{-5} -15 z^5 a^{-7} -9 z^5 a^{-9} +26 z^4 a^{-4} +28 z^4 a^{-6} +5 z^4 a^{-8} -3 z^4 a^{-10} -6 z^4-a z^3+4 z^3 a^{-1} +14 z^3 a^{-3} +20 z^3 a^{-5} +19 z^3 a^{-7} +8 z^3 a^{-9} +z^2 a^{-2} -10 z^2 a^{-4} -13 z^2 a^{-6} -2 z^2 a^{-8} +2 z^2 a^{-10} +2 z^2-z a^{-1} -3 z a^{-3} -7 z a^{-5} -8 z a^{-7} -3 z a^{-9} - a^{-2} +2 a^{-4} +3 a^{-6} + a^{-8} }[/math] |
Vassiliev invariants
| V2 and V3: | (1, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a41. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[11, Alternating, 41]] |
Out[2]= | 11 |
In[3]:= | PD[Knot[11, Alternating, 41]] |
Out[3]= | PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[14, 5, 15, 6], X[2, 8, 3, 7],X[18, 10, 19, 9], X[20, 12, 21, 11], X[16, 13, 17, 14], X[6, 15, 7, 16], X[22, 18, 1, 17], X[12, 20, 13, 19],X[10, 22, 11, 21]] |
In[4]:= | GaussCode[Knot[11, Alternating, 41]] |
Out[4]= | GaussCode[1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -10, 7, -3, 8, -7, 9, -5, 10, -6, 11, -9] |
In[5]:= | BR[Knot[11, Alternating, 41]] |
Out[5]= | BR[Knot[11, Alternating, 41]] |
In[6]:= | alex = Alexander[Knot[11, Alternating, 41]][t] |
Out[6]= | 2 11 27 2 3 |
In[7]:= | Conway[Knot[11, Alternating, 41]][z] |
Out[7]= | 2 4 6 1 + z + z + 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[10, 121], Knot[11, Alternating, 41], Knot[11, Alternating, 183],
Knot[11, Alternating, 198], Knot[11, Alternating, 331]} |
In[9]:= | {KnotDet[Knot[11, Alternating, 41]], KnotSignature[Knot[11, Alternating, 41]]} |
Out[9]= | {115, 2} |
In[10]:= | J=Jones[Knot[11, Alternating, 41]][q] |
Out[10]= | -2 4 2 3 4 5 6 7 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[11, Alternating, 41], Knot[11, Alternating, 183]} |
In[12]:= | A2Invariant[Knot[11, Alternating, 41]][q] |
Out[12]= | -6 2 -2 2 4 6 8 12 14 16 |
In[13]:= | Kauffman[Knot[11, Alternating, 41]][a, z] |
Out[13]= | 2 2-8 3 2 -2 3 z 8 z 7 z 3 z z 2 2 z 2 z |
In[14]:= | {Vassiliev[2][Knot[11, Alternating, 41]], Vassiliev[3][Knot[11, Alternating, 41]]} |
Out[14]= | {0, 0} |
In[15]:= | Kh[Knot[11, Alternating, 41]][q, t] |
Out[15]= | 3 1 3 1 5 3 q 3 5 |


