K11a97
|
|
|
|
Visit K11a97's page at Knotilus!
Visit K11a97's page at the original Knot Atlas! |
| K11a97 Quick Notes |
K11a97 Further Notes and Views
Knot presentations
| Planar diagram presentation | X4251 X10,3,11,4 X12,6,13,5 X18,7,19,8 X16,9,17,10 X2,11,3,12 X20,14,21,13 X22,16,1,15 X8,17,9,18 X6,19,7,20 X14,22,15,21 |
| Gauss code | 1, -6, 2, -1, 3, -10, 4, -9, 5, -2, 6, -3, 7, -11, 8, -5, 9, -4, 10, -7, 11, -8 |
| Dowker-Thistlethwaite code | 4 10 12 18 16 2 20 22 8 6 14 |
| Conway Notation | [4,211,3] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ 2 t^3-9 t^2+16 t-17+16 t^{-1} -9 t^{-2} +2 t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ 2 z^6+3 z^4-2 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \left\{2,t^2+t+1\right\} }[/math] |
| Determinant and Signature | { 71, 2 } |
| Jones polynomial | [math]\displaystyle{ -q^6+3 q^5-5 q^4+8 q^3-10 q^2+11 q-10+9 q^{-1} -7 q^{-2} +4 q^{-3} -2 q^{-4} + q^{-5} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^6 a^{-2} +z^6-2 a^2 z^4+3 z^4 a^{-2} -z^4 a^{-4} +3 z^4+a^4 z^2-6 a^2 z^2+2 z^2 a^{-2} -2 z^2 a^{-4} +3 z^2+2 a^4-4 a^2+3 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a^2 z^{10}+z^{10}+2 a^3 z^9+6 a z^9+4 z^9 a^{-1} +a^4 z^8+7 z^8 a^{-2} +6 z^8-11 a^3 z^7-26 a z^7-7 z^7 a^{-1} +8 z^7 a^{-3} -6 a^4 z^6-18 a^2 z^6-17 z^6 a^{-2} +7 z^6 a^{-4} -36 z^6+20 a^3 z^5+33 a z^5-8 z^5 a^{-1} -16 z^5 a^{-3} +5 z^5 a^{-5} +12 a^4 z^4+38 a^2 z^4+8 z^4 a^{-2} -9 z^4 a^{-4} +3 z^4 a^{-6} +46 z^4-14 a^3 z^3-15 a z^3+10 z^3 a^{-1} +7 z^3 a^{-3} -3 z^3 a^{-5} +z^3 a^{-7} -9 a^4 z^2-24 a^2 z^2-z^2 a^{-2} +2 z^2 a^{-4} -z^2 a^{-6} -19 z^2+3 a^3 z+3 a z-z a^{-1} -z a^{-3} +2 a^4+4 a^2+3 }[/math] |
| The A2 invariant | Data:K11a97/QuantumInvariant/A2/1,0 |
| The G2 invariant | Data:K11a97/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a97"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ 2 t^3-9 t^2+16 t-17+16 t^{-1} -9 t^{-2} +2 t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ 2 z^6+3 z^4-2 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \left\{2,t^2+t+1\right\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 71, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^6+3 q^5-5 q^4+8 q^3-10 q^2+11 q-10+9 q^{-1} -7 q^{-2} +4 q^{-3} -2 q^{-4} + q^{-5} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^6 a^{-2} +z^6-2 a^2 z^4+3 z^4 a^{-2} -z^4 a^{-4} +3 z^4+a^4 z^2-6 a^2 z^2+2 z^2 a^{-2} -2 z^2 a^{-4} +3 z^2+2 a^4-4 a^2+3 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a^2 z^{10}+z^{10}+2 a^3 z^9+6 a z^9+4 z^9 a^{-1} +a^4 z^8+7 z^8 a^{-2} +6 z^8-11 a^3 z^7-26 a z^7-7 z^7 a^{-1} +8 z^7 a^{-3} -6 a^4 z^6-18 a^2 z^6-17 z^6 a^{-2} +7 z^6 a^{-4} -36 z^6+20 a^3 z^5+33 a z^5-8 z^5 a^{-1} -16 z^5 a^{-3} +5 z^5 a^{-5} +12 a^4 z^4+38 a^2 z^4+8 z^4 a^{-2} -9 z^4 a^{-4} +3 z^4 a^{-6} +46 z^4-14 a^3 z^3-15 a z^3+10 z^3 a^{-1} +7 z^3 a^{-3} -3 z^3 a^{-5} +z^3 a^{-7} -9 a^4 z^2-24 a^2 z^2-z^2 a^{-2} +2 z^2 a^{-4} -z^2 a^{-6} -19 z^2+3 a^3 z+3 a z-z a^{-1} -z a^{-3} +2 a^4+4 a^2+3 }[/math] |
Vassiliev invariants
| V2 and V3: | (-2, 2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a97. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[11, Alternating, 97]] |
Out[2]= | 11 |
In[3]:= | PD[Knot[11, Alternating, 97]] |
Out[3]= | PD[X[4, 2, 5, 1], X[10, 3, 11, 4], X[12, 6, 13, 5], X[18, 7, 19, 8],X[16, 9, 17, 10], X[2, 11, 3, 12], X[20, 14, 21, 13],X[22, 16, 1, 15], X[8, 17, 9, 18], X[6, 19, 7, 20], X[14, 22, 15, 21]] |
In[4]:= | GaussCode[Knot[11, Alternating, 97]] |
Out[4]= | GaussCode[1, -6, 2, -1, 3, -10, 4, -9, 5, -2, 6, -3, 7, -11, 8, -5, 9, -4, 10, -7, 11, -8] |
In[5]:= | BR[Knot[11, Alternating, 97]] |
Out[5]= | BR[Knot[11, Alternating, 97]] |
In[6]:= | alex = Alexander[Knot[11, Alternating, 97]][t] |
Out[6]= | 2 9 16 2 3 |
In[7]:= | Conway[Knot[11, Alternating, 97]][z] |
Out[7]= | 2 4 6 1 - 2 z + 3 z + 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[11, Alternating, 97]} |
In[9]:= | {KnotDet[Knot[11, Alternating, 97]], KnotSignature[Knot[11, Alternating, 97]]} |
Out[9]= | {71, 2} |
In[10]:= | J=Jones[Knot[11, Alternating, 97]][q] |
Out[10]= | -5 2 4 7 9 2 3 4 5 6 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[11, Alternating, 97]} |
In[12]:= | A2Invariant[Knot[11, Alternating, 97]][q] |
Out[12]= | -16 -14 -10 2 2 -2 2 6 8 10 16 |
In[13]:= | Kauffman[Knot[11, Alternating, 97]][a, z] |
Out[13]= | 2 2 22 4 z z 3 2 z 2 z z |
In[14]:= | {Vassiliev[2][Knot[11, Alternating, 97]], Vassiliev[3][Knot[11, Alternating, 97]]} |
Out[14]= | {0, 2} |
In[15]:= | Kh[Knot[11, Alternating, 97]][q, t] |
Out[15]= | 3 1 1 1 3 1 4 3 |


