K11a68
|
|
|
|
Visit K11a68's page at Knotilus!
Visit K11a68's page at the original Knot Atlas! |
| K11a68 Quick Notes |
K11a68 Further Notes and Views
Knot presentations
| Planar diagram presentation | X4251 X8394 X16,5,17,6 X14,8,15,7 X2,9,3,10 X18,12,19,11 X20,14,21,13 X22,15,1,16 X10,18,11,17 X12,20,13,19 X6,21,7,22 |
| Gauss code | 1, -5, 2, -1, 3, -11, 4, -2, 5, -9, 6, -10, 7, -4, 8, -3, 9, -6, 10, -7, 11, -8 |
| Dowker-Thistlethwaite code | 4 8 16 14 2 18 20 22 10 12 6 |
| Conway Notation | [.4.21] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^4+6 t^3-14 t^2+20 t-21+20 t^{-1} -14 t^{-2} +6 t^{-3} - t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^8-2 z^6+2 z^4+2 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 103, 2 } |
| Jones polynomial | [math]\displaystyle{ q^7-4 q^6+7 q^5-11 q^4+15 q^3-16 q^2+16 q-13+10 q^{-1} -6 q^{-2} +3 q^{-3} - q^{-4} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^8 a^{-2} -5 z^6 a^{-2} +z^6 a^{-4} +2 z^6-a^2 z^4-8 z^4 a^{-2} +3 z^4 a^{-4} +8 z^4-3 a^2 z^2-4 z^2 a^{-2} +z^2 a^{-4} +8 z^2-a^2+ a^{-2} - a^{-4} +2 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10}+4 a z^9+10 z^9 a^{-1} +6 z^9 a^{-3} +3 a^2 z^8+6 z^8 a^{-2} +8 z^8 a^{-4} +z^8+a^3 z^7-14 a z^7-33 z^7 a^{-1} -10 z^7 a^{-3} +8 z^7 a^{-5} -12 a^2 z^6-30 z^6 a^{-2} -11 z^6 a^{-4} +7 z^6 a^{-6} -24 z^6-4 a^3 z^5+12 a z^5+32 z^5 a^{-1} +5 z^5 a^{-3} -7 z^5 a^{-5} +4 z^5 a^{-7} +14 a^2 z^4+30 z^4 a^{-2} +2 z^4 a^{-4} -7 z^4 a^{-6} +z^4 a^{-8} +34 z^4+4 a^3 z^3-2 a z^3-10 z^3 a^{-1} -4 z^3 a^{-3} -3 z^3 a^{-5} -3 z^3 a^{-7} -7 a^2 z^2-7 z^2 a^{-2} +2 z^2 a^{-4} +z^2 a^{-6} -15 z^2-a^3 z-a z+z a^{-1} +3 z a^{-3} +2 z a^{-5} +a^2- a^{-2} - a^{-4} +2 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{12}+q^8-q^6+2 q^4-2 q^2+1+2 q^{-2} - q^{-4} +5 q^{-6} -2 q^{-8} +2 q^{-10} - q^{-12} -2 q^{-14} + q^{-16} -2 q^{-18} + q^{-20} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{60}-2 q^{58}+5 q^{56}-9 q^{54}+11 q^{52}-13 q^{50}+6 q^{48}+11 q^{46}-36 q^{44}+65 q^{42}-85 q^{40}+75 q^{38}-31 q^{36}-52 q^{34}+146 q^{32}-211 q^{30}+217 q^{28}-139 q^{26}-7 q^{24}+171 q^{22}-287 q^{20}+306 q^{18}-209 q^{16}+35 q^{14}+141 q^{12}-251 q^{10}+246 q^8-135 q^6-24 q^4+167 q^2-218+159 q^{-2} -20 q^{-4} -145 q^{-6} +262 q^{-8} -285 q^{-10} +203 q^{-12} -34 q^{-14} -159 q^{-16} +317 q^{-18} -370 q^{-20} +309 q^{-22} -137 q^{-24} -74 q^{-26} +250 q^{-28} -329 q^{-30} +286 q^{-32} -138 q^{-34} -38 q^{-36} +174 q^{-38} -207 q^{-40} +137 q^{-42} -7 q^{-44} -119 q^{-46} +176 q^{-48} -148 q^{-50} +46 q^{-52} +72 q^{-54} -166 q^{-56} +201 q^{-58} -166 q^{-60} +85 q^{-62} +10 q^{-64} -97 q^{-66} +141 q^{-68} -155 q^{-70} +134 q^{-72} -86 q^{-74} +29 q^{-76} +33 q^{-78} -81 q^{-80} +104 q^{-82} -100 q^{-84} +75 q^{-86} -37 q^{-88} -3 q^{-90} +32 q^{-92} -49 q^{-94} +47 q^{-96} -32 q^{-98} +18 q^{-100} -2 q^{-102} -6 q^{-104} +9 q^{-106} -10 q^{-108} +6 q^{-110} -3 q^{-112} + q^{-114} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a68"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^4+6 t^3-14 t^2+20 t-21+20 t^{-1} -14 t^{-2} +6 t^{-3} - t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^8-2 z^6+2 z^4+2 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 103, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^7-4 q^6+7 q^5-11 q^4+15 q^3-16 q^2+16 q-13+10 q^{-1} -6 q^{-2} +3 q^{-3} - q^{-4} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^8 a^{-2} -5 z^6 a^{-2} +z^6 a^{-4} +2 z^6-a^2 z^4-8 z^4 a^{-2} +3 z^4 a^{-4} +8 z^4-3 a^2 z^2-4 z^2 a^{-2} +z^2 a^{-4} +8 z^2-a^2+ a^{-2} - a^{-4} +2 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 2 z^{10} a^{-2} +2 z^{10}+4 a z^9+10 z^9 a^{-1} +6 z^9 a^{-3} +3 a^2 z^8+6 z^8 a^{-2} +8 z^8 a^{-4} +z^8+a^3 z^7-14 a z^7-33 z^7 a^{-1} -10 z^7 a^{-3} +8 z^7 a^{-5} -12 a^2 z^6-30 z^6 a^{-2} -11 z^6 a^{-4} +7 z^6 a^{-6} -24 z^6-4 a^3 z^5+12 a z^5+32 z^5 a^{-1} +5 z^5 a^{-3} -7 z^5 a^{-5} +4 z^5 a^{-7} +14 a^2 z^4+30 z^4 a^{-2} +2 z^4 a^{-4} -7 z^4 a^{-6} +z^4 a^{-8} +34 z^4+4 a^3 z^3-2 a z^3-10 z^3 a^{-1} -4 z^3 a^{-3} -3 z^3 a^{-5} -3 z^3 a^{-7} -7 a^2 z^2-7 z^2 a^{-2} +2 z^2 a^{-4} +z^2 a^{-6} -15 z^2-a^3 z-a z+z a^{-1} +3 z a^{-3} +2 z a^{-5} +a^2- a^{-2} - a^{-4} +2 }[/math] |
Vassiliev invariants
| V2 and V3: | (2, 1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a68. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[11, Alternating, 68]] |
Out[2]= | 11 |
In[3]:= | PD[Knot[11, Alternating, 68]] |
Out[3]= | PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[16, 5, 17, 6], X[14, 8, 15, 7],X[2, 9, 3, 10], X[18, 12, 19, 11], X[20, 14, 21, 13], X[22, 15, 1, 16], X[10, 18, 11, 17], X[12, 20, 13, 19],X[6, 21, 7, 22]] |
In[4]:= | GaussCode[Knot[11, Alternating, 68]] |
Out[4]= | GaussCode[1, -5, 2, -1, 3, -11, 4, -2, 5, -9, 6, -10, 7, -4, 8, -3, 9, -6, 10, -7, 11, -8] |
In[5]:= | BR[Knot[11, Alternating, 68]] |
Out[5]= | BR[Knot[11, Alternating, 68]] |
In[6]:= | alex = Alexander[Knot[11, Alternating, 68]][t] |
Out[6]= | -4 6 14 20 2 3 4 |
In[7]:= | Conway[Knot[11, Alternating, 68]][z] |
Out[7]= | 2 4 6 8 1 + 2 z + 2 z - 2 z - z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[11, Alternating, 68]} |
In[9]:= | {KnotDet[Knot[11, Alternating, 68]], KnotSignature[Knot[11, Alternating, 68]]} |
Out[9]= | {103, 2} |
In[10]:= | J=Jones[Knot[11, Alternating, 68]][q] |
Out[10]= | -4 3 6 10 2 3 4 5 6 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[11, Alternating, 68], Knot[11, Alternating, 111]} |
In[12]:= | A2Invariant[Knot[11, Alternating, 68]][q] |
Out[12]= | -12 -8 -6 2 2 2 4 6 8 10 |
In[13]:= | Kauffman[Knot[11, Alternating, 68]][a, z] |
Out[13]= | 2 2-4 -2 2 2 z 3 z z 3 2 z 2 z |
In[14]:= | {Vassiliev[2][Knot[11, Alternating, 68]], Vassiliev[3][Knot[11, Alternating, 68]]} |
Out[14]= | {0, 1} |
In[15]:= | Kh[Knot[11, Alternating, 68]][q, t] |
Out[15]= | 3 1 2 1 4 2 6 4 |


