K11a61

From Knot Atlas
Revision as of 19:56, 28 August 2005 by ScottTestRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

K11a60.gif

K11a60

K11a62.gif

K11a62

K11a61.gif Visit K11a61's page at Knotilus!

Visit K11a61's page at the original Knot Atlas!

K11a61 Quick Notes


K11a61 Further Notes and Views

Knot presentations

Planar diagram presentation X4251 X8394 X16,6,17,5 X10,8,11,7 X2,9,3,10 X18,12,19,11 X20,14,21,13 X6,16,7,15 X22,18,1,17 X14,20,15,19 X12,22,13,21
Gauss code 1, -5, 2, -1, 3, -8, 4, -2, 5, -4, 6, -11, 7, -10, 8, -3, 9, -6, 10, -7, 11, -9
Dowker-Thistlethwaite code 4 8 16 10 2 18 20 6 22 14 12
Conway Notation [311,22,2]

Three dimensional invariants

Symmetry type Reversible
Unknotting number Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1,2\}}
3-genus 2
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a61/ThurstonBennequinNumber
Hyperbolic Volume 14.3183
A-Polynomial See Data:K11a61/A-polynomial

[edit Notes for K11a61's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2}
Rasmussen s-Invariant -2

[edit Notes for K11a61's four dimensional invariants]

Polynomial invariants

Alexander polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -6 t^2+26 t-39+26 t^{-1} -6 t^{-2} }
Conway polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -6 z^4+2 z^2+1}
2nd Alexander ideal (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}}
Determinant and Signature { 103, 2 }
Jones polynomial Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{10}+3 q^9-6 q^8+10 q^7-14 q^6+16 q^5-16 q^4+15 q^3-11 q^2+7 q-3+ q^{-1} }
HOMFLY-PT polynomial (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{-2} -3 z^4 a^{-4} -2 z^4 a^{-6} +2 z^2 a^{-2} -3 z^2 a^{-4} -z^2 a^{-6} +3 z^2 a^{-8} +z^2+2 a^{-2} - a^{-4} - a^{-6} +2 a^{-8} - a^{-10} }
Kauffman polynomial (db, data sources) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^{10} a^{-6} +z^{10} a^{-8} +4 z^9 a^{-5} +7 z^9 a^{-7} +3 z^9 a^{-9} +7 z^8 a^{-4} +11 z^8 a^{-6} +7 z^8 a^{-8} +3 z^8 a^{-10} +8 z^7 a^{-3} +3 z^7 a^{-5} -13 z^7 a^{-7} -7 z^7 a^{-9} +z^7 a^{-11} +6 z^6 a^{-2} -6 z^6 a^{-4} -32 z^6 a^{-6} -32 z^6 a^{-8} -12 z^6 a^{-10} +3 z^5 a^{-1} -11 z^5 a^{-3} -19 z^5 a^{-5} -3 z^5 a^{-7} -2 z^5 a^{-9} -4 z^5 a^{-11} -7 z^4 a^{-2} -5 z^4 a^{-4} +24 z^4 a^{-6} +36 z^4 a^{-8} +15 z^4 a^{-10} +z^4-2 z^3 a^{-1} +8 z^3 a^{-3} +13 z^3 a^{-5} +8 z^3 a^{-7} +10 z^3 a^{-9} +5 z^3 a^{-11} +6 z^2 a^{-2} +7 z^2 a^{-4} -9 z^2 a^{-6} -15 z^2 a^{-8} -6 z^2 a^{-10} -z^2-z a^{-3} -3 z a^{-5} -3 z a^{-7} -3 z a^{-9} -2 z a^{-11} -2 a^{-2} - a^{-4} + a^{-6} +2 a^{-8} + a^{-10} }
The A2 invariant Data:K11a61/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a61/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3: (2, 5)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 8}

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 2 is the signature of K11a61. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-10123456789χ
21           1-1
19          2 2
17         41 -3
15        62  4
13       84   -4
11      86    2
9     88     0
7    78      -1
5   48       4
3  37        -4
1 15         4
-1 2          -2
-31           1
Integral Khovanov Homology

(db, data source)

  
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i=3}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=-1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}\oplus{\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=0} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{3}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{7}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=3} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{8}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=4} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{8}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{8}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=5} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{8}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=6}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=7} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{4}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=8} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}\oplus{\mathbb Z}_2^{2}} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}^{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r=9} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}_2} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {\mathbb Z}}

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{Include}(\textrm{ColouredJonesM.mhtml})}

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[Knot[11, Alternating, 61]]
Out[2]=  
11
In[3]:=
PD[Knot[11, Alternating, 61]]
Out[3]=  
PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[16, 6, 17, 5], X[10, 8, 11, 7], 
 X[2, 9, 3, 10], X[18, 12, 19, 11], X[20, 14, 21, 13], 

 X[6, 16, 7, 15], X[22, 18, 1, 17], X[14, 20, 15, 19], 

X[12, 22, 13, 21]]
In[4]:=
GaussCode[Knot[11, Alternating, 61]]
Out[4]=  
GaussCode[1, -5, 2, -1, 3, -8, 4, -2, 5, -4, 6, -11, 7, -10, 8, -3, 9, 
  -6, 10, -7, 11, -9]
In[5]:=
BR[Knot[11, Alternating, 61]]
Out[5]=  
BR[Knot[11, Alternating, 61]]
In[6]:=
alex = Alexander[Knot[11, Alternating, 61]][t]
Out[6]=  
      6    26             2

-39 - -- + -- + 26 t - 6 t

      2   t
t
In[7]:=
Conway[Knot[11, Alternating, 61]][z]
Out[7]=  
       2      4
1 + 2 z  - 6 z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{Knot[11, Alternating, 61]}
In[9]:=
{KnotDet[Knot[11, Alternating, 61]], KnotSignature[Knot[11, Alternating, 61]]}
Out[9]=  
{103, 2}
In[10]:=
J=Jones[Knot[11, Alternating, 61]][q]
Out[10]=  
     1             2       3       4       5       6       7      8

-3 + - + 7 q - 11 q + 15 q - 16 q + 16 q - 14 q + 10 q - 6 q +

    q

    9    10
3 q - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{Knot[11, Alternating, 61]}
In[12]:=
A2Invariant[Knot[11, Alternating, 61]][q]
Out[12]=  
      -4    -2      2      4    6      8      10      12      14

-1 + q - q + 4 q - 2 q + q + 3 q - 2 q + 2 q - 2 q -

    20      22    26      28    30    32
3 q + 4 q - q + 2 q - q - q
In[13]:=
Kauffman[Knot[11, Alternating, 61]][a, z]
Out[13]=  
                                                                  2
-10   2     -6    -4   2    2 z   3 z   3 z   3 z   z     2   6 z

a + -- + a - a - -- - --- - --- - --- - --- - -- - z - ---- -

       8                2    11    9     7     5     3         10
      a                a    a     a     a     a     a         a

     2      2      2      2      3       3      3       3      3
 15 z    9 z    7 z    6 z    5 z    10 z    8 z    13 z    8 z
 ----- - ---- + ---- + ---- + ---- + ----- + ---- + ----- + ---- - 
   8       6      4      2     11      9       7      5       3
  a       a      a      a     a       a       a      a       a

    3            4       4       4      4      4      5      5
 2 z     4   15 z    36 z    24 z    5 z    7 z    4 z    2 z
 ---- + z  + ----- + ----- + ----- - ---- - ---- - ---- - ---- - 
  a            10      8       6       4      2     11      9
              a       a       a       a      a     a       a

    5       5       5      5       6       6       6      6      6
 3 z    19 z    11 z    3 z    12 z    32 z    32 z    6 z    6 z
 ---- - ----- - ----- + ---- - ----- - ----- - ----- - ---- + ---- + 
   7      5       3      a       10      8       6       4      2
  a      a       a              a       a       a       a      a

  7       7       7      7      7      8      8       8      8
 z     7 z    13 z    3 z    8 z    3 z    7 z    11 z    7 z
 --- - ---- - ----- + ---- + ---- + ---- + ---- + ----- + ---- + 
  11     9      7       5      3     10      8      6       4
 a      a      a       a      a     a       a      a       a

    9      9      9    10    10
 3 z    7 z    4 z    z     z
 ---- + ---- + ---- + --- + ---
   9      7      5     8     6
a a a a a
In[14]:=
{Vassiliev[2][Knot[11, Alternating, 61]], Vassiliev[3][Knot[11, Alternating, 61]]}
Out[14]=  
{0, 5}
In[15]:=
Kh[Knot[11, Alternating, 61]][q, t]
Out[15]=  
         3     1      2    q      3        5        5  2      7  2

5 q + 3 q + ----- + --- + - + 7 q t + 4 q t + 8 q t + 7 q t +

             3  2   q t   t
            q  t

    7  3      9  3      9  4      11  4      11  5      13  5
 8 q  t  + 8 q  t  + 8 q  t  + 8 q   t  + 6 q   t  + 8 q   t  + 

    13  6      15  6      15  7      17  7    17  8      19  8    21  9
4 q t + 6 q t + 2 q t + 4 q t + q t + 2 q t + q t