K11a11
|
|
|
|
Visit K11a11's page at Knotilus!
Visit K11a11's page at the original Knot Atlas! |
| K11a11 Quick Notes |
K11a11 Further Notes and Views
Knot presentations
| Planar diagram presentation | X4251 X8394 X10,6,11,5 X16,8,17,7 X2,9,3,10 X20,11,21,12 X18,14,19,13 X6,16,7,15 X14,18,15,17 X22,19,1,20 X12,21,13,22 |
| Gauss code | 1, -5, 2, -1, 3, -8, 4, -2, 5, -3, 6, -11, 7, -9, 8, -4, 9, -7, 10, -6, 11, -10 |
| Dowker-Thistlethwaite code | 4 8 10 16 2 20 18 6 14 22 12 |
| Conway Notation | [211,21,2++] |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -2 t^3+11 t^2-26 t+35-26 t^{-1} +11 t^{-2} -2 t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ -2 z^6-z^4+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 113, 0 } |
| Jones polynomial | [math]\displaystyle{ q^6-4 q^5+8 q^4-12 q^3+16 q^2-18 q+18-15 q^{-1} +11 q^{-2} -6 q^{-3} +3 q^{-4} - q^{-5} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^6 a^{-2} -z^6+2 a^2 z^4-2 z^4 a^{-2} +z^4 a^{-4} -2 z^4-a^4 z^2+4 a^2 z^2-z^2 a^{-2} +z^2 a^{-4} -3 z^2-a^4+3 a^2+ a^{-2} -2 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^{10} a^{-2} +z^{10}+3 a z^9+7 z^9 a^{-1} +4 z^9 a^{-3} +4 a^2 z^8+11 z^8 a^{-2} +6 z^8 a^{-4} +9 z^8+4 a^3 z^7+3 a z^7-6 z^7 a^{-1} -z^7 a^{-3} +4 z^7 a^{-5} +3 a^4 z^6-30 z^6 a^{-2} -14 z^6 a^{-4} +z^6 a^{-6} -18 z^6+a^5 z^5-4 a^3 z^5-10 a z^5-11 z^5 a^{-1} -16 z^5 a^{-3} -10 z^5 a^{-5} -6 a^4 z^4-9 a^2 z^4+21 z^4 a^{-2} +7 z^4 a^{-4} -2 z^4 a^{-6} +9 z^4-2 a^5 z^3-a^3 z^3+8 a z^3+15 z^3 a^{-1} +14 z^3 a^{-3} +6 z^3 a^{-5} +4 a^4 z^2+9 a^2 z^2-3 z^2 a^{-2} -z^2 a^{-4} +z^2 a^{-6} +4 z^2+a^5 z+a^3 z-2 a z-4 z a^{-1} -3 z a^{-3} -z a^{-5} -a^4-3 a^2- a^{-2} -2 }[/math] |
| The A2 invariant | Data:K11a11/QuantumInvariant/A2/1,0 |
| The G2 invariant | Data:K11a11/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a11"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -2 t^3+11 t^2-26 t+35-26 t^{-1} +11 t^{-2} -2 t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -2 z^6-z^4+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 113, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^6-4 q^5+8 q^4-12 q^3+16 q^2-18 q+18-15 q^{-1} +11 q^{-2} -6 q^{-3} +3 q^{-4} - q^{-5} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^6 a^{-2} -z^6+2 a^2 z^4-2 z^4 a^{-2} +z^4 a^{-4} -2 z^4-a^4 z^2+4 a^2 z^2-z^2 a^{-2} +z^2 a^{-4} -3 z^2-a^4+3 a^2+ a^{-2} -2 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^{10} a^{-2} +z^{10}+3 a z^9+7 z^9 a^{-1} +4 z^9 a^{-3} +4 a^2 z^8+11 z^8 a^{-2} +6 z^8 a^{-4} +9 z^8+4 a^3 z^7+3 a z^7-6 z^7 a^{-1} -z^7 a^{-3} +4 z^7 a^{-5} +3 a^4 z^6-30 z^6 a^{-2} -14 z^6 a^{-4} +z^6 a^{-6} -18 z^6+a^5 z^5-4 a^3 z^5-10 a z^5-11 z^5 a^{-1} -16 z^5 a^{-3} -10 z^5 a^{-5} -6 a^4 z^4-9 a^2 z^4+21 z^4 a^{-2} +7 z^4 a^{-4} -2 z^4 a^{-6} +9 z^4-2 a^5 z^3-a^3 z^3+8 a z^3+15 z^3 a^{-1} +14 z^3 a^{-3} +6 z^3 a^{-5} +4 a^4 z^2+9 a^2 z^2-3 z^2 a^{-2} -z^2 a^{-4} +z^2 a^{-6} +4 z^2+a^5 z+a^3 z-2 a z-4 z a^{-1} -3 z a^{-3} -z a^{-5} -a^4-3 a^2- a^{-2} -2 }[/math] |
Vassiliev invariants
| V2 and V3: | (0, -1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a11. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
[math]\displaystyle{ \textrm{Include}(\textrm{ColouredJonesM.mhtml}) }[/math]
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Knot[11, Alternating, 11]] |
Out[2]= | 11 |
In[3]:= | PD[Knot[11, Alternating, 11]] |
Out[3]= | PD[X[4, 2, 5, 1], X[8, 3, 9, 4], X[10, 6, 11, 5], X[16, 8, 17, 7],X[2, 9, 3, 10], X[20, 11, 21, 12], X[18, 14, 19, 13], X[6, 16, 7, 15], X[14, 18, 15, 17], X[22, 19, 1, 20],X[12, 21, 13, 22]] |
In[4]:= | GaussCode[Knot[11, Alternating, 11]] |
Out[4]= | GaussCode[1, -5, 2, -1, 3, -8, 4, -2, 5, -3, 6, -11, 7, -9, 8, -4, 9, -7, 10, -6, 11, -10] |
In[5]:= | BR[Knot[11, Alternating, 11]] |
Out[5]= | BR[Knot[11, Alternating, 11]] |
In[6]:= | alex = Alexander[Knot[11, Alternating, 11]][t] |
Out[6]= | 2 11 26 2 3 |
In[7]:= | Conway[Knot[11, Alternating, 11]][z] |
Out[7]= | 4 6 1 - z - 2 z |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {Knot[11, Alternating, 11], Knot[11, Alternating, 167]} |
In[9]:= | {KnotDet[Knot[11, Alternating, 11]], KnotSignature[Knot[11, Alternating, 11]]} |
Out[9]= | {113, 0} |
In[10]:= | J=Jones[Knot[11, Alternating, 11]][q] |
Out[10]= | -5 3 6 11 15 2 3 4 5 6 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {Knot[11, Alternating, 11], Knot[11, Alternating, 167]} |
In[12]:= | A2Invariant[Knot[11, Alternating, 11]][q] |
Out[12]= | -16 -12 2 3 2 2 3 2 6 8 10 |
In[13]:= | Kauffman[Knot[11, Alternating, 11]][a, z] |
Out[13]= | -2 2 4 z 3 z 4 z 3 5 2 |
In[14]:= | {Vassiliev[2][Knot[11, Alternating, 11]], Vassiliev[3][Knot[11, Alternating, 11]]} |
Out[14]= | {0, -1} |
In[15]:= | Kh[Knot[11, Alternating, 11]][q, t] |
Out[15]= | 10 1 2 1 4 2 7 4 |


