L10n108

From Knot Atlas
Revision as of 12:26, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

L10n107.gif

L10n107

L10n109.gif

L10n109

L10n108.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L10n108 at Knotilus!


Link Presentations

[edit Notes on L10n108's Link Presentations]

Planar diagram presentation X6172 X5,12,6,13 X3849 X15,2,16,3 X16,7,17,8 X19,11,20,14 X13,15,14,20 X9,18,10,19 X11,10,12,5 X4,17,1,18
Gauss code {1, 4, -3, -10}, {-9, 2, -7, 6}, {-2, -1, 5, 3, -8, 9}, {-4, -5, 10, 8, -6, 7}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L10n108 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -5 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-6-5-4-3-2-1012χ
0        11
-2         0
-4      31 2
-6    112  2
-8    41   3
-10  212    3
-12  42     2
-141 1      2
-1622       0
-181        1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L10n107.gif

L10n107

L10n109.gif

L10n109