L11n325
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n325's Link Presentations]
| Planar diagram presentation | X6172 X5,14,6,15 X8493 X2,16,3,15 X16,7,17,8 X9,18,10,19 X11,21,12,20 X19,22,20,13 X13,12,14,5 X4,17,1,18 X21,11,22,10 |
| Gauss code | {1, -4, 3, -10}, {-2, -1, 5, -3, -6, 11, -7, 9}, {-9, 2, 4, -5, 10, 6, -8, 7, -11, 8} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(u-1) (v-1)^2 (w-1)^2}{\sqrt{u} v w} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ - q^{-8} +3 q^{-7} -6 q^{-6} +9 q^{-5} -10 q^{-4} +12 q^{-3} -9 q^{-2} +2 q+8 q^{-1} -4 }[/math] (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^4 a^6-2 z^2 a^6-2 a^6+z^6 a^4+4 z^4 a^4+8 z^2 a^4+a^4 z^{-2} +6 a^4-3 z^4 a^2-8 z^2 a^2-2 a^2 z^{-2} -7 a^2+2 z^2+ z^{-2} +3 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ z^5 a^9-2 z^3 a^9+z a^9+3 z^6 a^8-6 z^4 a^8+3 z^2 a^8-a^8+4 z^7 a^7-6 z^5 a^7+z a^7+3 z^8 a^6-z^6 a^6-6 z^4 a^6+4 z^2 a^6+z^9 a^5+5 z^7 a^5-11 z^5 a^5+8 z^3 a^5-3 z a^5+5 z^8 a^4-8 z^6 a^4+10 z^4 a^4-11 z^2 a^4-a^4 z^{-2} +7 a^4+z^9 a^3+2 z^7 a^3-3 z^5 a^3+5 z^3 a^3-6 z a^3+2 a^3 z^{-1} +2 z^8 a^2-4 z^6 a^2+13 z^4 a^2-18 z^2 a^2-2 a^2 z^{-2} +9 a^2+z^7 a+z^5 a-z^3 a-3 z a+2 a z^{-1} +3 z^4-6 z^2- z^{-2} +4 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



