L11n326
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n326's Link Presentations]
| Planar diagram presentation | X6172 X5,14,6,15 X3849 X15,2,16,3 X16,7,17,8 X13,18,14,19 X9,21,10,20 X19,5,20,12 X11,13,12,22 X21,11,22,10 X4,17,1,18 |
| Gauss code | {1, 4, -3, -11}, {-2, -1, 5, 3, -7, 10, -9, 8}, {-6, 2, -4, -5, 11, 6, -8, 7, -10, 9} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-u v^3 w^3+u v^3 w^2+u v^2 w^3-2 u v^2 w^2+u v^2 w+u v w^2-v^2 w-v w^2+2 v w-v-w+1}{\sqrt{u} v^{3/2} w^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - q^{-6} +2 q^{-5} -2 q^{-4} +q^3+5 q^{-3} -2 q^2-4 q^{-2} +3 q+5 q^{-1} -3} (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^2 z^8+a^4 z^6-7 a^2 z^6+z^6+6 a^4 z^4-17 a^2 z^4+5 z^4-a^6 z^2+11 a^4 z^2-18 a^2 z^2+7 z^2-2 a^6+7 a^4-9 a^2+4+a^4 z^{-2} -2 a^2 z^{-2} + z^{-2} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^3 z^9+a z^9+2 a^4 z^8+4 a^2 z^8+2 z^8+a^5 z^7-3 a^3 z^7-2 a z^7+2 z^7 a^{-1} -12 a^4 z^6-21 a^2 z^6+z^6 a^{-2} -8 z^6-5 a^5 z^5-3 a^3 z^5-6 a z^5-8 z^5 a^{-1} +2 a^6 z^4+28 a^4 z^4+37 a^2 z^4-4 z^4 a^{-2} +7 z^4+a^7 z^3+11 a^5 z^3+17 a^3 z^3+13 a z^3+6 z^3 a^{-1} -5 a^6 z^2-27 a^4 z^2-28 a^2 z^2+3 z^2 a^{-2} -3 z^2-2 a^7 z-7 a^5 z-12 a^3 z-8 a z-z a^{-1} +3 a^6+11 a^4+11 a^2- a^{-2} +3+2 a^3 z^{-1} +2 a z^{-1} -a^4 z^{-2} -2 a^2 z^{-2} - z^{-2} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



