L11n220
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n220's Link Presentations]
| Planar diagram presentation | X10,1,11,2 X8,9,1,10 X3,12,4,13 X15,22,16,9 X2,17,3,18 X21,4,22,5 X14,5,15,6 X20,13,21,14 X11,16,12,17 X6,19,7,20 X18,7,19,8 |
| Gauss code | {1, -5, -3, 6, 7, -10, 11, -2}, {2, -1, -9, 3, 8, -7, -4, 9, 5, -11, 10, -8, -6, 4} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{t(1)^2 t(2)^5+t(1)^3 t(2)^4-t(1)^2 t(2)^4+t(1)^2 t(2)^3+t(1) t(2)^2-t(1) t(2)+t(2)+t(1)}{t(1)^{3/2} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{1}{q^{7/2}}+\frac{1}{q^{9/2}}-\frac{2}{q^{11/2}}+\frac{2}{q^{13/2}}-\frac{3}{q^{15/2}}+\frac{2}{q^{17/2}}-\frac{2}{q^{19/2}}+\frac{2}{q^{21/2}}-\frac{1}{q^{23/2}} }[/math] (db) |
| Signature | -7 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^{13} (-z)-a^{13} z^{-1} +a^{11} z^5+6 a^{11} z^3+9 a^{11} z+3 a^{11} z^{-1} -a^9 z^7-6 a^9 z^5-11 a^9 z^3-8 a^9 z-2 a^9 z^{-1} -a^7 z^7-6 a^7 z^5-10 a^7 z^3-4 a^7 z }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{15} z+a^{14} z^2+a^{14}+a^{13} z^5-3 a^{13} z^3+3 a^{13} z-a^{13} z^{-1} +a^{12} z^8-6 a^{12} z^6+13 a^{12} z^4-12 a^{12} z^2+3 a^{12}+a^{11} z^9-7 a^{11} z^7+20 a^{11} z^5-29 a^{11} z^3+16 a^{11} z-3 a^{11} z^{-1} +2 a^{10} z^8-11 a^{10} z^6+19 a^{10} z^4-14 a^{10} z^2+3 a^{10}+a^9 z^9-6 a^9 z^7+13 a^9 z^5-16 a^9 z^3+10 a^9 z-2 a^9 z^{-1} +a^8 z^8-5 a^8 z^6+6 a^8 z^4-a^8 z^2+a^7 z^7-6 a^7 z^5+10 a^7 z^3-4 a^7 z }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



