L10a38
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a38's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X16,13,17,14 X14,9,15,10 X10,15,11,16 X20,17,5,18 X18,7,19,8 X8,19,9,20 X2536 X4,11,1,12 |
| Gauss code | {1, -9, 2, -10}, {9, -1, 7, -8, 4, -5, 10, -2, 3, -4, 5, -3, 6, -7, 8, -6} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{\left(v^2-v+1\right) \left(3 u v^2-3 u v+u+v^3-3 v^2+3 v\right)}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{8}{q^{9/2}}+\frac{3}{q^{7/2}}-\frac{1}{q^{5/2}}-\frac{1}{q^{25/2}}+\frac{3}{q^{23/2}}-\frac{6}{q^{21/2}}+\frac{11}{q^{19/2}}-\frac{13}{q^{17/2}}+\frac{14}{q^{15/2}}-\frac{14}{q^{13/2}}+\frac{10}{q^{11/2}} }[/math] (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^{13} z^{-1} -4 z a^{11}-5 a^{11} z^{-1} +6 z^3 a^9+14 z a^9+8 a^9 z^{-1} -3 z^5 a^7-10 z^3 a^7-11 z a^7-4 a^7 z^{-1} -z^5 a^5-2 z^3 a^5-z a^5 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{15} z^5-2 a^{15} z^3+a^{15} z+3 a^{14} z^6-6 a^{14} z^4+5 a^{14} z^2-2 a^{14}+4 a^{13} z^7-4 a^{13} z^5-a^{13} z^3+a^{13} z+a^{13} z^{-1} +3 a^{12} z^8+5 a^{12} z^6-21 a^{12} z^4+22 a^{12} z^2-9 a^{12}+a^{11} z^9+11 a^{11} z^7-23 a^{11} z^5+16 a^{11} z^3-9 a^{11} z+5 a^{11} z^{-1} +7 a^{10} z^8+a^{10} z^6-29 a^{10} z^4+35 a^{10} z^2-14 a^{10}+a^9 z^9+13 a^9 z^7-32 a^9 z^5+32 a^9 z^3-22 a^9 z+8 a^9 z^{-1} +4 a^8 z^8+2 a^8 z^6-18 a^8 z^4+19 a^8 z^2-8 a^8+6 a^7 z^7-13 a^7 z^5+15 a^7 z^3-12 a^7 z+4 a^7 z^{-1} +3 a^6 z^6-4 a^6 z^4+a^6 z^2+a^5 z^5-2 a^5 z^3+a^5 z }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



