L10a37
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10a37's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X18,8,19,7 X20,15,5,16 X16,19,17,20 X14,10,15,9 X10,14,11,13 X8,18,9,17 X2536 X4,11,1,12 |
| Gauss code | {1, -9, 2, -10}, {9, -1, 3, -8, 6, -7, 10, -2, 7, -6, 4, -5, 8, -3, 5, -4} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{t(1) t(2)^3-2 t(2)^3-6 t(1) t(2)^2+8 t(2)^2+8 t(1) t(2)-6 t(2)-2 t(1)+1}{\sqrt{t(1)} t(2)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{7/2}+3 q^{5/2}-6 q^{3/2}+9 \sqrt{q}-\frac{11}{\sqrt{q}}+\frac{11}{q^{3/2}}-\frac{11}{q^{5/2}}+\frac{8}{q^{7/2}}-\frac{5}{q^{9/2}}+\frac{2}{q^{11/2}}-\frac{1}{q^{13/2}}} (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | (db) |
| Kauffman polynomial | (db) |
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



