K11a120

From Knot Atlas
Revision as of 11:52, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

K11a119.gif

K11a119

K11a121.gif

K11a121

K11a120.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a120 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X14,5,15,6 X18,7,19,8 X12,10,13,9 X2,11,3,12 X22,13,1,14 X6,15,7,16 X20,17,21,18 X8,19,9,20 X16,21,17,22
Gauss code 1, -6, 2, -1, 3, -8, 4, -10, 5, -2, 6, -5, 7, -3, 8, -11, 9, -4, 10, -9, 11, -7
Dowker-Thistlethwaite code 4 10 14 18 12 2 22 6 20 8 16
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a120 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant 4

[edit Notes for K11a120's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -2 t^3+12 t^2-25 t+31-25 t^{-1} +12 t^{-2} -2 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -2 z^6+5 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 109, -4 }
Jones polynomial [math]\displaystyle{ 1-3 q^{-1} +7 q^{-2} -11 q^{-3} +15 q^{-4} -17 q^{-5} +18 q^{-6} -15 q^{-7} +11 q^{-8} -7 q^{-9} +3 q^{-10} - q^{-11} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^2 a^{10}-a^{10}+2 z^4 a^8+3 z^2 a^8-z^6 a^6-z^4 a^6+2 z^2 a^6+2 a^6-z^6 a^4-2 z^4 a^4-z^2 a^4-a^4+z^4 a^2+2 z^2 a^2+a^2 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^5 a^{13}-2 z^3 a^{13}+z a^{13}+3 z^6 a^{12}-5 z^4 a^{12}+2 z^2 a^{12}+5 z^7 a^{11}-8 z^5 a^{11}+5 z^3 a^{11}-2 z a^{11}+5 z^8 a^{10}-5 z^6 a^{10}+2 z^4 a^{10}-2 z^2 a^{10}+a^{10}+3 z^9 a^9+4 z^7 a^9-13 z^5 a^9+10 z^3 a^9-2 z a^9+z^{10} a^8+8 z^8 a^8-14 z^6 a^8+6 z^4 a^8+z^2 a^8+6 z^9 a^7-4 z^7 a^7-7 z^5 a^7+5 z^3 a^7+z^{10} a^6+7 z^8 a^6-14 z^6 a^6+z^4 a^6+6 z^2 a^6-2 a^6+3 z^9 a^5-11 z^5 a^5+8 z^3 a^5-2 z a^5+4 z^8 a^4-7 z^6 a^4-z^4 a^4+4 z^2 a^4-a^4+3 z^7 a^3-8 z^5 a^3+6 z^3 a^3-z a^3+z^6 a^2-3 z^4 a^2+3 z^2 a^2-a^2 }[/math]
The A2 invariant Data:K11a120/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a120/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a295,}

Vassiliev invariants

V2 and V3: (5, -13)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 20 }[/math] [math]\displaystyle{ -104 }[/math] [math]\displaystyle{ 200 }[/math] [math]\displaystyle{ \frac{1846}{3} }[/math] [math]\displaystyle{ \frac{290}{3} }[/math] [math]\displaystyle{ -2080 }[/math] [math]\displaystyle{ -\frac{12272}{3} }[/math] [math]\displaystyle{ -\frac{2048}{3} }[/math] [math]\displaystyle{ -616 }[/math] [math]\displaystyle{ \frac{4000}{3} }[/math] [math]\displaystyle{ 5408 }[/math] [math]\displaystyle{ \frac{36920}{3} }[/math] [math]\displaystyle{ \frac{5800}{3} }[/math] [math]\displaystyle{ \frac{165583}{6} }[/math] [math]\displaystyle{ \frac{26}{3} }[/math] [math]\displaystyle{ \frac{103910}{9} }[/math] [math]\displaystyle{ \frac{5941}{18} }[/math] [math]\displaystyle{ \frac{9199}{6} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-4 is the signature of K11a120. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-1012χ
1           11
-1          2 -2
-3         51 4
-5        73  -4
-7       84   4
-9      97    -2
-11     98     1
-13    69      3
-15   59       -4
-17  26        4
-19 15         -4
-21 2          2
-231           -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-5 }[/math] [math]\displaystyle{ i=-3 }[/math]
[math]\displaystyle{ r=-9 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a119.gif

K11a119

K11a121.gif

K11a121