K11a45

From Knot Atlas
Jump to navigationJump to search

K11a44.gif

K11a44

K11a46.gif

K11a46

K11a45.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a45 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X14,6,15,5 X2837 X20,9,21,10 X18,11,19,12 X6,14,7,13 X22,16,1,15 X12,17,13,18 X10,19,11,20 X16,22,17,21
Gauss code 1, -4, 2, -1, 3, -7, 4, -2, 5, -10, 6, -9, 7, -3, 8, -11, 9, -6, 10, -5, 11, -8
Dowker-Thistlethwaite code 4 8 14 2 20 18 6 22 12 10 16
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a45 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number
3-genus 2
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a45/ThurstonBennequinNumber
Hyperbolic Volume 13.2123
A-Polynomial See Data:K11a45/A-polynomial

[edit Notes for K11a45's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for K11a45's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 87, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11a45/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a45/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {K11a118,}

Vassiliev invariants

V2 and V3: (-2, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of K11a45. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-101234567χ
17           1-1
15          2 2
13         41 -3
11        62  4
9       64   -2
7      86    2
5     66     0
3    58      -3
1   47       3
-1  14        -3
-3 14         3
-5 1          -1
-71           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a44.gif

K11a44

K11a46.gif

K11a46