K11n168

From Knot Atlas
Revision as of 12:00, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

K11n167.gif

K11n167

K11n169.gif

K11n169

K11n168.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n168 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X10,4,11,3 X14,6,15,5 X20,8,21,7 X4,10,5,9 X11,18,12,19 X2,14,3,13 X22,15,1,16 X8,18,9,17 X19,12,20,13 X16,21,17,22
Gauss code 1, -7, 2, -5, 3, -1, 4, -9, 5, -2, -6, 10, 7, -3, 8, -11, 9, 6, -10, -4, 11, -8
Dowker-Thistlethwaite code 6 10 14 20 4 -18 2 22 8 -12 16
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11n168 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11n168/ThurstonBennequinNumber
Hyperbolic Volume 15.0132
A-Polynomial See Data:K11n168/A-polynomial

[edit Notes for K11n168's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for K11n168's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 75, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11n168/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n168/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {K11n148,}

Vassiliev invariants

V2 and V3: (3, 4)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of K11n168. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-1012345χ
13         2-2
11        3 3
9       62 -4
7      63  3
5     66   0
3    76    1
1   47     3
-1  36      -3
-3 14       3
-5 3        -3
-71         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n167.gif

K11n167

K11n169.gif

K11n169