K11n31

From Knot Atlas
Revision as of 12:06, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

K11n30.gif

K11n30

K11n32.gif

K11n32

K11n31.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n31 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X12,6,13,5 X2837 X9,17,10,16 X6,12,7,11 X13,20,14,21 X15,11,16,10 X17,1,18,22 X19,14,20,15 X21,19,22,18
Gauss code 1, -4, 2, -1, 3, -6, 4, -2, -5, 8, 6, -3, -7, 10, -8, 5, -9, 11, -10, 7, -11, 9
Dowker-Thistlethwaite code 4 8 12 2 -16 6 -20 -10 -22 -14 -18
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11n31 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for K11n31's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 3, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11n31/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n31/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (1, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of K11n31. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-10123456789χ
21           1-1
19          1 1
17         11 0
15       121  0
13      111   1
11     122    -1
9    121     0
7   111      -1
5  111       1
3 12         1
1            0
-11           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n30.gif

K11n30

K11n32.gif

K11n32