K11a349

From Knot Atlas
Revision as of 12:06, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

K11a348.gif

K11a348

K11a350.gif

K11a350

K11a349.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a349 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X18,4,19,3 X16,5,17,6 X12,8,13,7 X4,10,5,9 X2,11,3,12 X22,14,1,13 X20,16,21,15 X10,18,11,17 X8,19,9,20 X14,22,15,21
Gauss code 1, -6, 2, -5, 3, -1, 4, -10, 5, -9, 6, -4, 7, -11, 8, -3, 9, -2, 10, -8, 11, -7
Dowker-Thistlethwaite code 6 18 16 12 4 2 22 20 10 8 14
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a349 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a349/ThurstonBennequinNumber
Hyperbolic Volume 17.9314
A-Polynomial See Data:K11a349/A-polynomial

[edit Notes for K11a349's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for K11a349's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 155, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11a349/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a349/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-1, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of K11a349. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-1012345678χ
19           11
17          3 -3
15         61 5
13        93  -6
11       126   6
9      139    -4
7     1212     0
5    1013      3
3   712       -5
1  411        7
-1 16         -5
-3 4          4
-51           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a348.gif

K11a348

K11a350.gif

K11a350