L9a12
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a12 is in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a12's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X18,13,5,14 X14,7,15,8 X16,9,17,10 X8,15,9,16 X10,17,11,18 X2536 X4,11,1,12 |
| Gauss code | {1, -8, 2, -9}, {8, -1, 4, -6, 5, -7, 9, -2, 3, -4, 6, -5, 7, -3} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in , , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{-2 u v^4+2 u v^3-2 u v^2+2 u v-u-v^5+2 v^4-2 v^3+2 v^2-2 v}{\sqrt{u} v^{5/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{4}{q^{9/2}}+\frac{2}{q^{7/2}}-\frac{1}{q^{5/2}}+\frac{1}{q^{23/2}}-\frac{2}{q^{21/2}}+\frac{4}{q^{19/2}}-\frac{5}{q^{17/2}}+\frac{6}{q^{15/2}}-\frac{7}{q^{13/2}}+\frac{4}{q^{11/2}}} (db) |
| Signature | -5 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{11} (-z)-2 a^{11} z^{-1} +3 a^9 z^3+9 a^9 z+5 a^9 z^{-1} -2 a^7 z^5-8 a^7 z^3-9 a^7 z-3 a^7 z^{-1} -a^5 z^5-3 a^5 z^3-a^5 z} (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^4 a^{14}+2 z^2 a^{14}-a^{14}-2 z^5 a^{13}+3 z^3 a^{13}-2 z^6 a^{12}+z^4 a^{12}+2 z^2 a^{12}-2 z^7 a^{11}+3 z^5 a^{11}-5 z^3 a^{11}+5 z a^{11}-2 a^{11} z^{-1} -z^8 a^{10}-z^6 a^{10}+6 z^4 a^{10}-11 z^2 a^{10}+5 a^{10}-5 z^7 a^9+17 z^5 a^9-26 z^3 a^9+16 z a^9-5 a^9 z^{-1} -z^8 a^8-z^6 a^8+9 z^4 a^8-12 z^2 a^8+5 a^8-3 z^7 a^7+11 z^5 a^7-15 z^3 a^7+10 z a^7-3 a^7 z^{-1} -2 z^6 a^6+5 z^4 a^6-z^2 a^6-z^5 a^5+3 z^3 a^5-z a^5} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



