L9a11
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a11 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^2_{26}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a11's Link Presentations]
| Planar diagram presentation | X6172 X12,3,13,4 X14,8,15,7 X18,16,5,15 X16,9,17,10 X8,17,9,18 X10,14,11,13 X2536 X4,11,1,12 |
| Gauss code | {1, -8, 2, -9}, {8, -1, 3, -6, 5, -7, 9, -2, 7, -3, 4, -5, 6, -4} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{u v^3-4 u v^2+6 u v-2 u-2 v^3+6 v^2-4 v+1}{\sqrt{u} v^{3/2}}} (db) |
| Jones polynomial | (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^7 z^{-1} -3 a^5 z-2 a^5 z^{-1} +3 a^3 z^3+4 a^3 z+2 a^3 z^{-1} -a z^5-2 a z^3+z^3 a^{-1} -3 a z-a z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^4 z^8-a^2 z^8-2 a^5 z^7-6 a^3 z^7-4 a z^7-2 a^6 z^6-5 a^4 z^6-9 a^2 z^6-6 z^6-a^7 z^5+5 a^3 z^5-4 z^5 a^{-1} +4 a^6 z^4+12 a^4 z^4+17 a^2 z^4-z^4 a^{-2} +8 z^4+3 a^7 z^3+7 a^5 z^3+7 a^3 z^3+7 a z^3+4 z^3 a^{-1} -2 a^6 z^2-7 a^4 z^2-7 a^2 z^2-2 z^2-3 a^7 z-7 a^5 z-8 a^3 z-4 a z+a^4+a^7 z^{-1} +2 a^5 z^{-1} +2 a^3 z^{-1} +a z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



