L9a10
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a10 is in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a10's Link Presentations]
| Planar diagram presentation | X6172 X16,7,17,8 X4,17,1,18 X12,6,13,5 X10,4,11,3 X18,12,5,11 X14,9,15,10 X2,14,3,13 X8,15,9,16 |
| Gauss code | {1, -8, 5, -3}, {4, -1, 2, -9, 7, -5, 6, -4, 8, -7, 9, -2, 3, -6} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2 (u-1) (v-1) \left(v^2-v+1\right)}{\sqrt{u} v^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{9/2}+\frac{1}{q^{9/2}}+3 q^{7/2}-\frac{3}{q^{7/2}}-6 q^{5/2}+\frac{4}{q^{5/2}}+7 q^{3/2}-\frac{7}{q^{3/2}}-8 \sqrt{q}+\frac{8}{\sqrt{q}}} (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a z^5+z^5 a^{-1} -a^3 z^3+2 a z^3+2 z^3 a^{-1} -z^3 a^{-3} -a^3 z+2 z a^{-1} -z a^{-3} +a^3 z^{-1} -2 a z^{-1} +2 a^{-1} z^{-1} - a^{-3} z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^3 a^{-5} +a^4 z^6-3 a^4 z^4+3 z^4 a^{-4} +2 a^4 z^2+3 a^3 z^7-11 a^3 z^5+6 z^5 a^{-3} +11 a^3 z^3-6 z^3 a^{-3} -a^3 z+3 z a^{-3} -a^3 z^{-1} - a^{-3} z^{-1} +2 a^2 z^8-3 a^2 z^6+7 z^6 a^{-2} -4 a^2 z^4-10 z^4 a^{-2} +4 a^2 z^2+4 z^2 a^{-2} +8 a z^7+5 z^7 a^{-1} -22 a z^5-5 z^5 a^{-1} +13 a z^3-5 z^3 a^{-1} +2 a z+6 z a^{-1} -2 a z^{-1} -2 a^{-1} z^{-1} +2 z^8+3 z^6-14 z^4+6 z^2-1} (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



