L9a9
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a9 is [math]\displaystyle{ 9^2_{37} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a9's Link Presentations]
| Planar diagram presentation | X6172 X14,7,15,8 X16,9,17,10 X8,15,9,16 X4,17,1,18 X12,6,13,5 X10,4,11,3 X18,12,5,11 X2,14,3,13 |
| Gauss code | {1, -9, 7, -5}, {6, -1, 2, -4, 3, -7, 8, -6, 9, -2, 4, -3, 5, -8} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1) \left(t(2)^2+1\right) \left(t(2)^2-t(2)+1\right)}{\sqrt{t(1)} t(2)^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{3}{q^{9/2}}-q^{7/2}+\frac{5}{q^{7/2}}+3 q^{5/2}-\frac{7}{q^{5/2}}-5 q^{3/2}+\frac{8}{q^{3/2}}+\frac{1}{q^{11/2}}+6 \sqrt{q}-\frac{9}{\sqrt{q}} }[/math] (db) |
| Signature | -1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^3 z^5-3 a^3 z^3-2 a^3 z+a z^7+5 a z^5-z^5 a^{-1} +8 a z^3-3 z^3 a^{-1} +4 a z-2 z a^{-1} +a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -2 a^2 z^8-2 z^8-4 a^3 z^7-8 a z^7-4 z^7 a^{-1} -4 a^4 z^6-3 z^6 a^{-2} +z^6-3 a^5 z^5+7 a^3 z^5+22 a z^5+11 z^5 a^{-1} -z^5 a^{-3} -a^6 z^4+5 a^4 z^4+3 a^2 z^4+7 z^4 a^{-2} +4 z^4+4 a^5 z^3-8 a^3 z^3-24 a z^3-10 z^3 a^{-1} +2 z^3 a^{-3} +a^6 z^2-a^4 z^2-3 a^2 z^2-2 z^2 a^{-2} -3 z^2+4 a^3 z+8 a z+4 z a^{-1} +1-a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



