L11a125
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11a125's Link Presentations]
| Planar diagram presentation | X6172 X14,4,15,3 X18,8,19,7 X20,10,21,9 X22,12,5,11 X8,20,9,19 X10,22,11,21 X16,14,17,13 X12,18,13,17 X2536 X4,16,1,15 |
| Gauss code | {1, -10, 2, -11}, {10, -1, 3, -6, 4, -7, 5, -9, 8, -2, 11, -8, 9, -3, 6, -4, 7, -5} |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(u-1) (v-1) \left(2 v^4-v^3+2 v^2-v+2\right)}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{23/2}-3 q^{21/2}+5 q^{19/2}-7 q^{17/2}+10 q^{15/2}-10 q^{13/2}+9 q^{11/2}-8 q^{9/2}+5 q^{7/2}-4 q^{5/2}+q^{3/2}-\sqrt{q} }[/math] (db) |
| Signature | 5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^5 a^{-9} +3 z^3 a^{-9} +z a^{-9} -z^7 a^{-7} -4 z^5 a^{-7} -3 z^3 a^{-7} +2 z a^{-7} +2 a^{-7} z^{-1} -z^7 a^{-5} -5 z^5 a^{-5} -9 z^3 a^{-5} -10 z a^{-5} -5 a^{-5} z^{-1} +z^5 a^{-3} +5 z^3 a^{-3} +7 z a^{-3} +3 a^{-3} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^{10} a^{-6} -z^{10} a^{-8} -z^9 a^{-5} -4 z^9 a^{-7} -3 z^9 a^{-9} -z^8 a^{-4} +3 z^8 a^{-6} -4 z^8 a^{-10} -z^7 a^{-3} +z^7 a^{-5} +15 z^7 a^{-7} +9 z^7 a^{-9} -4 z^7 a^{-11} +3 z^6 a^{-4} -5 z^6 a^{-6} +5 z^6 a^{-8} +9 z^6 a^{-10} -4 z^6 a^{-12} +6 z^5 a^{-3} +10 z^5 a^{-5} -18 z^5 a^{-7} -14 z^5 a^{-9} +5 z^5 a^{-11} -3 z^5 a^{-13} +2 z^4 a^{-4} +13 z^4 a^{-6} -5 z^4 a^{-8} -10 z^4 a^{-10} +5 z^4 a^{-12} -z^4 a^{-14} -12 z^3 a^{-3} -20 z^3 a^{-5} +7 z^3 a^{-7} +9 z^3 a^{-9} -2 z^3 a^{-11} +4 z^3 a^{-13} -9 z^2 a^{-4} -13 z^2 a^{-6} +z^2 a^{-8} +3 z^2 a^{-10} -z^2 a^{-12} +z^2 a^{-14} +10 z a^{-3} +15 z a^{-5} +3 z a^{-7} -2 z a^{-9} +5 a^{-4} +5 a^{-6} - a^{-10} -3 a^{-3} z^{-1} -5 a^{-5} z^{-1} -2 a^{-7} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



