K11n114

From Knot Atlas
Revision as of 16:13, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11n113.gif

K11n113

K11n115.gif

K11n115

K11n114.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n114 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X14,6,15,5 X18,7,19,8 X16,9,17,10 X2,11,3,12 X13,21,14,20 X22,16,1,15 X8,17,9,18 X19,13,20,12 X6,21,7,22
Gauss code 1, -6, 2, -1, 3, -11, 4, -9, 5, -2, 6, 10, -7, -3, 8, -5, 9, -4, -10, 7, 11, -8
Dowker-Thistlethwaite code 4 10 14 18 16 2 -20 22 8 -12 6
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11n114 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for K11n114's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 53, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11n114/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n114/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a195,}

Same Jones Polynomial (up to mirroring, ): {9_30,}

Vassiliev invariants

V2 and V3: (-1, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11n114. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-1012345χ
11         1-1
9        2 2
7       31 -2
5      52  3
3     43   -1
1    55    0
-1   45     1
-3  24      -2
-5 14       3
-7 2        -2
-91         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n113.gif

K11n113

K11n115.gif

K11n115