K11a287

From Knot Atlas
Revision as of 16:14, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11a286.gif

K11a286

K11a288.gif

K11a288

K11a287.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a287 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X10,3,11,4 X16,6,17,5 X18,7,19,8 X20,10,21,9 X2,11,3,12 X8,13,9,14 X4,16,5,15 X22,17,1,18 X12,20,13,19 X14,21,15,22
Gauss code 1, -6, 2, -8, 3, -1, 4, -7, 5, -2, 6, -10, 7, -11, 8, -3, 9, -4, 10, -5, 11, -9
Dowker-Thistlethwaite code 6 10 16 18 20 2 8 4 22 12 14
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a287 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for K11a287's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 181, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant Data:K11a287/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-1, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11a287. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
11           1-1
9          4 4
7         81 -7
5        124  8
3       148   -6
1      1612    4
-1     1415     1
-3    1115      -4
-5   714       7
-7  311        -8
-9 17         6
-11 3          -3
-131           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a286.gif

K11a286

K11a288.gif

K11a288