10 1
From Knot Atlas
Jump to navigationJump to search
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -4 t+9-4 t^{-1} }[/math] |
| Conway polynomial | [math]\displaystyle{ 1-4 z^2 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 17, 0 } |
| Jones polynomial | [math]\displaystyle{ q^2-q+2-2 q^{-1} +2 q^{-2} -2 q^{-3} +2 q^{-4} -2 q^{-5} + q^{-6} - q^{-7} + q^{-8} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ a^8-z^2 a^6-a^6-z^2 a^4-z^2 a^2-z^2+ a^{-2} }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a^7 z^9+a^5 z^9+a^8 z^8+2 a^6 z^8+a^4 z^8-7 a^7 z^7-6 a^5 z^7+a^3 z^7-7 a^8 z^6-12 a^6 z^6-4 a^4 z^6+a^2 z^6+16 a^7 z^5+12 a^5 z^5-3 a^3 z^5+a z^5+15 a^8 z^4+21 a^6 z^4+3 a^4 z^4-2 a^2 z^4+z^4-14 a^7 z^3-11 a^5 z^3+a^3 z^3-a z^3+z^3 a^{-1} -10 a^8 z^2-11 a^6 z^2+z^2 a^{-2} +4 a^7 z+4 a^5 z+a^8+a^6- a^{-2} }[/math] |
| The A2 invariant | [math]\displaystyle{ q^{26}+q^{24}-q^{18}-q^{16}+ q^{-2} + q^{-6} + q^{-8} }[/math] |
| The G2 invariant | Data:10 1/QuantumInvariant/G2/1,0 |
Further Quantum Invariants
Further quantum knot invariants for 10_1.
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ q^{17}-q^{11}+ q^{-1} + q^{-5} }[/math] |
| 2 | [math]\displaystyle{ q^{50}-q^{46}-q^{40}+q^{36}+q^{16}+q^{14}-q^4-q^2+ q^{-2} + q^{-8} + q^{-14} }[/math] |
| 3 | [math]\displaystyle{ q^{99}-q^{95}-q^{93}+q^{89}-q^{85}+q^{81}+q^{79}-q^{75}+q^{49}+q^{47}-q^{43}-q^{37}-q^{35}-q^{29}+q^{25}+q^{23}+q^{15}+q^{13}+q^{11}-q^9+q^5+q^3-q- q^{-1} + q^{-3} + q^{-5} - q^{-7} - q^{-9} + q^{-19} + q^{-27} }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{26}+q^{24}-q^{18}-q^{16}+ q^{-2} + q^{-6} + q^{-8} }[/math] |
| 2,0 | [math]\displaystyle{ q^{68}+q^{66}+q^{64}-q^{62}-q^{60}-q^{58}-q^{56}-q^{54}-q^{52}+q^{50}+q^{48}+q^{46}+q^{24}+2 q^{22}+q^{20}+q^{18}+q^{16}-q^{10}-2 q^8-2 q^6-q^4+ q^{-4} + q^{-10} + q^{-12} + q^{-16} + q^{-18} + q^{-20} }[/math] |
.
Computer Talk
The above data is available with the Mathematica package
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 1"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -4 t+9-4 t^{-1} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ 1-4 z^2 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 17, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^2-q+2-2 q^{-1} +2 q^{-2} -2 q^{-3} +2 q^{-4} -2 q^{-5} + q^{-6} - q^{-7} + q^{-8} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ a^8-z^2 a^6-a^6-z^2 a^4-z^2 a^2-z^2+ a^{-2} }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a^7 z^9+a^5 z^9+a^8 z^8+2 a^6 z^8+a^4 z^8-7 a^7 z^7-6 a^5 z^7+a^3 z^7-7 a^8 z^6-12 a^6 z^6-4 a^4 z^6+a^2 z^6+16 a^7 z^5+12 a^5 z^5-3 a^3 z^5+a z^5+15 a^8 z^4+21 a^6 z^4+3 a^4 z^4-2 a^2 z^4+z^4-14 a^7 z^3-11 a^5 z^3+a^3 z^3-a z^3+z^3 a^{-1} -10 a^8 z^2-11 a^6 z^2+z^2 a^{-2} +4 a^7 z+4 a^5 z+a^8+a^6- a^{-2} }[/math] |