10 1

From Knot Atlas
Jump to navigationJump to search

9 49.gif

9_49

10 2.gif

10_2

10 1.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 1 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X11,14,12,15 X3,13,4,12 X13,3,14,2 X5,20,6,1 X7,18,8,19 X9,16,10,17 X15,10,16,11 X17,8,18,9 X19,6,20,7
Gauss code -1, 4, -3, 1, -5, 10, -6, 9, -7, 8, -2, 3, -4, 2, -8, 7, -9, 6, -10, 5
Dowker-Thistlethwaite code 4 12 20 18 16 14 2 10 8 6
Conway Notation [82]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 13, width is 6,

Braid index is 6

10 1 ML.gif 10 1 AP.gif
[{12, 9}, {8, 10}, {9, 7}, {6, 8}, {7, 5}, {4, 6}, {5, 3}, {2, 4}, {3, 1}, {11, 2}, {10, 12}, {1, 11}]

[edit Notes on presentations of 10 1]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 1
Bridge index 2
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-9][-3]
Hyperbolic Volume 3.5262
A-Polynomial See Data:10 1/A-polynomial

[edit Notes for 10 1's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 1 }[/math]
Topological 4 genus [math]\displaystyle{ 1 }[/math]
Concordance genus [math]\displaystyle{ 1 }[/math]
Rasmussen s-Invariant 0

[edit Notes for 10 1's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -4 t+9-4 t^{-1} }[/math]
Conway polynomial [math]\displaystyle{ 1-4 z^2 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 17, 0 }
Jones polynomial [math]\displaystyle{ q^2-q+2-2 q^{-1} +2 q^{-2} -2 q^{-3} +2 q^{-4} -2 q^{-5} + q^{-6} - q^{-7} + q^{-8} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ a^8-z^2 a^6-a^6-z^2 a^4-z^2 a^2-z^2+ a^{-2} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ a^7 z^9+a^5 z^9+a^8 z^8+2 a^6 z^8+a^4 z^8-7 a^7 z^7-6 a^5 z^7+a^3 z^7-7 a^8 z^6-12 a^6 z^6-4 a^4 z^6+a^2 z^6+16 a^7 z^5+12 a^5 z^5-3 a^3 z^5+a z^5+15 a^8 z^4+21 a^6 z^4+3 a^4 z^4-2 a^2 z^4+z^4-14 a^7 z^3-11 a^5 z^3+a^3 z^3-a z^3+z^3 a^{-1} -10 a^8 z^2-11 a^6 z^2+z^2 a^{-2} +4 a^7 z+4 a^5 z+a^8+a^6- a^{-2} }[/math]
The A2 invariant [math]\displaystyle{ q^{26}+q^{24}-q^{18}-q^{16}+ q^{-2} + q^{-6} + q^{-8} }[/math]
The G2 invariant Data:10 1/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {8_3,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (-4, 6)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -16 }[/math] [math]\displaystyle{ 48 }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{232}{3} }[/math] [math]\displaystyle{ \frac{200}{3} }[/math] [math]\displaystyle{ -768 }[/math] [math]\displaystyle{ -1088 }[/math] [math]\displaystyle{ -256 }[/math] [math]\displaystyle{ -272 }[/math] [math]\displaystyle{ -\frac{2048}{3} }[/math] [math]\displaystyle{ 1152 }[/math] [math]\displaystyle{ -\frac{3712}{3} }[/math] [math]\displaystyle{ -\frac{3200}{3} }[/math] [math]\displaystyle{ \frac{30898}{15} }[/math] [math]\displaystyle{ \frac{5768}{15} }[/math] [math]\displaystyle{ -\frac{6248}{45} }[/math] [math]\displaystyle{ \frac{4046}{9} }[/math] [math]\displaystyle{ -\frac{4142}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of 10 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-8-7-6-5-4-3-2-1012χ
5          11
3           0
1        21 1
-1       11  0
-3      11   0
-5     11    0
-7    11     0
-9   11      0
-11   1       -1
-13 11        0
-15           0
-171          1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials