K11n108
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,3,11,4 X5,14,6,15 X7,16,8,17 X18,9,19,10 X2,11,3,12 X20,13,21,14 X15,6,16,7 X22,18,1,17 X12,19,13,20 X8,21,9,22 |
| Gauss code | 1, -6, 2, -1, -3, 8, -4, -11, 5, -2, 6, -10, 7, 3, -8, 4, 9, -5, 10, -7, 11, -9 |
| Dowker-Thistlethwaite code | 4 10 -14 -16 18 2 20 -6 22 12 8 |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^3+8 t^2-17 t+21-17 t^{-1} +8 t^{-2} - t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^6+2 z^4+6 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 73, -4 } |
| Jones polynomial | [math]\displaystyle{ 2 q^{-2} -5 q^{-3} +9 q^{-4} -11 q^{-5} +13 q^{-6} -12 q^{-7} +10 q^{-8} -7 q^{-9} +3 q^{-10} - q^{-11} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^2 a^{10}-a^{10}+2 z^4 a^8+3 z^2 a^8-z^6 a^6-2 z^4 a^6+a^6+2 z^4 a^4+4 z^2 a^4+a^4 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^5 a^{13}-2 z^3 a^{13}+z a^{13}+3 z^6 a^{12}-5 z^4 a^{12}+2 z^2 a^{12}+5 z^7 a^{11}-9 z^5 a^{11}+6 z^3 a^{11}-3 z a^{11}+4 z^8 a^{10}-3 z^6 a^{10}-2 z^4 a^{10}-z^2 a^{10}+a^{10}+z^9 a^9+9 z^7 a^9-20 z^5 a^9+13 z^3 a^9-3 z a^9+6 z^8 a^8-5 z^6 a^8-3 z^4 a^8+3 z^2 a^8+z^9 a^7+5 z^7 a^7-7 z^5 a^7+z^3 a^7+z a^7+2 z^8 a^6+z^6 a^6-3 z^4 a^6+2 z^2 a^6-a^6+z^7 a^5+3 z^5 a^5-4 z^3 a^5+3 z^4 a^4-4 z^2 a^4+a^4 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{34}+q^{30}-3 q^{28}+q^{26}-q^{24}-q^{22}+3 q^{20}-q^{18}+4 q^{16}-q^{14}+2 q^{10}-2 q^8+2 q^6 }[/math] |
| The G2 invariant | Data:K11n108/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11n108"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^3+8 t^2-17 t+21-17 t^{-1} +8 t^{-2} - t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^6+2 z^4+6 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 73, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ 2 q^{-2} -5 q^{-3} +9 q^{-4} -11 q^{-5} +13 q^{-6} -12 q^{-7} +10 q^{-8} -7 q^{-9} +3 q^{-10} - q^{-11} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^2 a^{10}-a^{10}+2 z^4 a^8+3 z^2 a^8-z^6 a^6-2 z^4 a^6+a^6+2 z^4 a^4+4 z^2 a^4+a^4 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^5 a^{13}-2 z^3 a^{13}+z a^{13}+3 z^6 a^{12}-5 z^4 a^{12}+2 z^2 a^{12}+5 z^7 a^{11}-9 z^5 a^{11}+6 z^3 a^{11}-3 z a^{11}+4 z^8 a^{10}-3 z^6 a^{10}-2 z^4 a^{10}-z^2 a^{10}+a^{10}+z^9 a^9+9 z^7 a^9-20 z^5 a^9+13 z^3 a^9-3 z a^9+6 z^8 a^8-5 z^6 a^8-3 z^4 a^8+3 z^2 a^8+z^9 a^7+5 z^7 a^7-7 z^5 a^7+z^3 a^7+z a^7+2 z^8 a^6+z^6 a^6-3 z^4 a^6+2 z^2 a^6-a^6+z^7 a^5+3 z^5 a^5-4 z^3 a^5+3 z^4 a^4-4 z^2 a^4+a^4 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11n108"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^3+8 t^2-17 t+21-17 t^{-1} +8 t^{-2} - t^{-3} }[/math], [math]\displaystyle{ 2 q^{-2} -5 q^{-3} +9 q^{-4} -11 q^{-5} +13 q^{-6} -12 q^{-7} +10 q^{-8} -7 q^{-9} +3 q^{-10} - q^{-11} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (6, -15) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-4 is the signature of K11n108. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|






