K11a299

From Knot Atlas
Revision as of 16:21, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11a298.gif

K11a298

K11a300.gif

K11a300

K11a299.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a299 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X10,4,11,3 X18,6,19,5 X2837 X16,10,17,9 X22,12,1,11 X20,14,21,13 X4,16,5,15 X8,18,9,17 X14,20,15,19 X12,22,13,21
Gauss code 1, -4, 2, -8, 3, -1, 4, -9, 5, -2, 6, -11, 7, -10, 8, -5, 9, -3, 10, -7, 11, -6
Dowker-Thistlethwaite code 6 10 18 2 16 22 20 4 8 14 12
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a299 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number
3-genus 2
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a299/ThurstonBennequinNumber
Hyperbolic Volume 14.3418
A-Polynomial See Data:K11a299/A-polynomial

[edit Notes for K11a299's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for K11a299's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 97, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11a299/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a299/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a192,}

Same Jones Polynomial (up to mirroring, ): {K11a192,}

Vassiliev invariants

V2 and V3: (8, 22)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of K11a299. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
01234567891011χ
27           1-1
25          2 2
23         41 -3
21        52  3
19       84   -4
17      75    2
15     88     0
13    67      -1
11   48       4
9  36        -3
7  4         4
513          -2
31           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a298.gif

K11a298

K11a300.gif

K11a300