L11n367

From Knot Atlas
Revision as of 12:18, 31 August 2005 by DrorsRobot (talk | contribs)
Jump to navigationJump to search

L11n366.gif

L11n366

L11n368.gif

L11n368

L11n367.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L11n367 at Knotilus!


Link Presentations

[edit Notes on L11n367's Link Presentations]

Planar diagram presentation X6172 X10,4,11,3 X12,8,13,7 X13,20,14,21 X19,9,20,8 X9,19,10,18 X15,22,16,17 X17,16,18,5 X21,14,22,15 X2536 X4,12,1,11
Gauss code {1, -10, 2, -11}, {-8, 6, -5, 4, -9, 7}, {10, -1, 3, 5, -6, -2, 11, -3, -4, 9, -7, 8}
A Braid Representative {{{braid_table}}}
A Morse Link Presentation L11n367 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature -2 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-2-1012345χ
9       1-1
7      1 1
5     11 0
3    21  1
1  111   1
-1  32    1
-3112     2
-521      1
-72       2
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L11n366.gif

L11n366

L11n368.gif

L11n368