L11n366
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L11n366's Link Presentations]
| Planar diagram presentation | X6172 X10,4,11,3 X12,8,13,7 X15,17,16,22 X18,10,19,9 X8,18,9,17 X13,21,14,20 X21,15,22,14 X19,5,20,16 X2536 X4,12,1,11 |
| Gauss code | {1, -10, 2, -11}, {6, -5, -9, 7, -8, 4}, {10, -1, 3, -6, 5, -2, 11, -3, -7, 8, -4, 9} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{(u-1) (w-1) \left(v^2 w^3-1\right)}{\sqrt{u} v w^2}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^9-q^8+2 q^7-2 q^6+3 q^5-2 q^4+3 q^3-q^2+q} (db) |
| Signature | 6 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^8 a^{-6} +z^6 a^{-4} -7 z^6 a^{-6} +z^6 a^{-8} +6 z^4 a^{-4} -17 z^4 a^{-6} +6 z^4 a^{-8} +11 z^2 a^{-4} -20 z^2 a^{-6} +10 z^2 a^{-8} -z^2 a^{-10} +7 a^{-4} -12 a^{-6} +6 a^{-8} - a^{-10} + a^{-4} z^{-2} -2 a^{-6} z^{-2} + a^{-8} z^{-2} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^{-12} -z a^{-11} +z^4 a^{-10} -5 z^2 a^{-10} +2 a^{-10} +2 z^7 a^{-9} -10 z^5 a^{-9} +11 z^3 a^{-9} -3 z a^{-9} +3 z^8 a^{-8} -18 z^6 a^{-8} +33 z^4 a^{-8} -26 z^2 a^{-8} - a^{-8} z^{-2} +9 a^{-8} +z^9 a^{-7} -3 z^7 a^{-7} -6 z^5 a^{-7} +19 z^3 a^{-7} -12 z a^{-7} +2 a^{-7} z^{-1} +4 z^8 a^{-6} -25 z^6 a^{-6} +49 z^4 a^{-6} -39 z^2 a^{-6} -2 a^{-6} z^{-2} +15 a^{-6} +z^9 a^{-5} -5 z^7 a^{-5} +4 z^5 a^{-5} +8 z^3 a^{-5} -10 z a^{-5} +2 a^{-5} z^{-1} +z^8 a^{-4} -7 z^6 a^{-4} +17 z^4 a^{-4} -18 z^2 a^{-4} - a^{-4} z^{-2} +8 a^{-4} } (db) |
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



