K11n114
|
|
(Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
Planar diagram presentation | X4251 X10,3,11,4 X14,6,15,5 X18,7,19,8 X16,9,17,10 X2,11,3,12 X13,21,14,20 X22,16,1,15 X8,17,9,18 X19,13,20,12 X6,21,7,22 |
Gauss code | 1, -6, 2, -1, 3, -11, 4, -9, 5, -2, 6, 10, -7, -3, 8, -5, 9, -4, -10, 7, 11, -8 |
Dowker-Thistlethwaite code | 4 10 14 18 16 2 -20 22 8 -12 6 |
A Braid Representative | |||||||
A Morse Link Presentation |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | |
Conway polynomial | |
2nd Alexander ideal (db, data sources) | |
Determinant and Signature | { 53, 0 } |
Jones polynomial | |
HOMFLY-PT polynomial (db, data sources) | |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a z^9+z^9 a^{-1} +a^2 z^8+3 z^8 a^{-2} +4 z^8-2 a z^7+2 z^7 a^{-1} +4 z^7 a^{-3} -2 a^2 z^6-5 z^6 a^{-2} +3 z^6 a^{-4} -10 z^6+3 a^3 z^5+7 a z^5-6 z^5 a^{-1} -9 z^5 a^{-3} +z^5 a^{-5} +a^4 z^4+8 a^2 z^4+2 z^4 a^{-2} -7 z^4 a^{-4} +16 z^4-4 a^3 z^3-5 a z^3+6 z^3 a^{-1} +5 z^3 a^{-3} -2 z^3 a^{-5} -2 a^4 z^2-9 a^2 z^2+3 z^2 a^{-4} -10 z^2+a^3 z-2 z a^{-1} -z a^{-3} +a^4+2 a^2+2} |
The A2 invariant | Data:K11n114/QuantumInvariant/A2/1,0 |
The G2 invariant | Data:K11n114/QuantumInvariant/G2/1,0 |
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11n114"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 53, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a z^9+z^9 a^{-1} +a^2 z^8+3 z^8 a^{-2} +4 z^8-2 a z^7+2 z^7 a^{-1} +4 z^7 a^{-3} -2 a^2 z^6-5 z^6 a^{-2} +3 z^6 a^{-4} -10 z^6+3 a^3 z^5+7 a z^5-6 z^5 a^{-1} -9 z^5 a^{-3} +z^5 a^{-5} +a^4 z^4+8 a^2 z^4+2 z^4 a^{-2} -7 z^4 a^{-4} +16 z^4-4 a^3 z^3-5 a z^3+6 z^3 a^{-1} +5 z^3 a^{-3} -2 z^3 a^{-5} -2 a^4 z^2-9 a^2 z^2+3 z^2 a^{-4} -10 z^2+a^3 z-2 z a^{-1} -z a^{-3} +a^4+2 a^2+2} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a195,}
Same Jones Polynomial (up to mirroring, ): {9_30,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11n114"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a195,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{9_30,} |
Vassiliev invariants
V2 and V3: | (-1, 1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11n114. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|