L10n103
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n103's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X14,7,15,8 X8,13,5,14 X11,18,12,19 X20,16,17,15 X16,20,9,19 X17,12,18,13 X2536 X4,9,1,10 |
| Gauss code | {1, -9, 2, -10}, {9, -1, 3, -4}, {-8, 5, 7, -6}, {10, -2, -5, 8, 4, -3, 6, -7} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{(t(1)-1) (t(2)-1) (t(3)-1) (t(4)-1)}{\sqrt{t(1)} \sqrt{t(2)} \sqrt{t(3)} \sqrt{t(4)}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\sqrt{q}+\frac{3}{\sqrt{q}}-\frac{5}{q^{3/2}}+\frac{4}{q^{5/2}}-\frac{7}{q^{7/2}}+\frac{4}{q^{9/2}}-\frac{6}{q^{11/2}}+\frac{1}{q^{13/2}}-\frac{1}{q^{15/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^9 z^{-3} -3 a^7 z^{-3} -3 a^7 z^{-1} -a^5 z^3+3 a^5 z^{-3} +2 a^5 z+6 a^5 z^{-1} +a^3 z^5+2 a^3 z^3-a^3 z^{-3} -a^3 z-3 a^3 z^{-1} -a z^3-a z }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^9 z^3-a^9 z^{-3} -3 a^9 z+3 a^9 z^{-1} +a^8 z^4+2 a^8 z^2+3 a^8 z^{-2} -6 a^8+a^7 z^7-4 a^7 z^5+12 a^7 z^3-3 a^7 z^{-3} -9 a^7 z+6 a^7 z^{-1} +a^6 z^8-2 a^6 z^6+a^6 z^4+9 a^6 z^2+6 a^6 z^{-2} -11 a^6+4 a^5 z^7-12 a^5 z^5+16 a^5 z^3-3 a^5 z^{-3} -11 a^5 z+6 a^5 z^{-1} +a^4 z^8+a^4 z^6-7 a^4 z^4+8 a^4 z^2+3 a^4 z^{-2} -6 a^4+3 a^3 z^7-7 a^3 z^5+3 a^3 z^3-a^3 z^{-3} -4 a^3 z+3 a^3 z^{-1} +3 a^2 z^6-7 a^2 z^4+a^2 z^2+a z^5-2 a z^3+a z }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



