L10n104
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
Link Presentations
[edit Notes on L10n104's Link Presentations]
| Planar diagram presentation | X6172 X5,12,6,13 X3849 X15,2,16,3 X7,17,8,16 X14,9,11,10 X20,13,15,14 X19,5,20,10 X11,18,12,19 X4,17,1,18 |
| Gauss code | {1, 4, -3, -10}, {-9, 2, 7, -6}, {-2, -1, -5, 3, 6, 8}, {-4, 5, 10, 9, -8, -7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(t(1) t(2)-t(3) t(4)) (t(3) t(4)-1)}{\sqrt{t(1)} \sqrt{t(2)} t(3) t(4)} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{1}{q^{3/2}}-\frac{1}{q^{5/2}}-\frac{2}{q^{7/2}}-\frac{1}{q^{9/2}}-\frac{1}{q^{11/2}}-\frac{1}{q^{13/2}}-\frac{1}{q^{17/2}} }[/math] (db) |
| Signature | -2 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^9 z^{-3} +a^9 z^{-1} -3 a^7 z^{-3} -2 a^7 z-6 a^7 z^{-1} +a^5 z^3+3 a^5 z^{-3} +6 a^5 z+9 a^5 z^{-1} -a^3 z^3-a^3 z^{-3} -4 a^3 z-4 a^3 z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^9 z^7-7 a^9 z^5+15 a^9 z^3-a^9 z^{-3} -12 a^9 z+5 a^9 z^{-1} +a^8 z^6-7 a^8 z^4+14 a^8 z^2+3 a^8 z^{-2} -10 a^8+a^7 z^7-8 a^7 z^5+21 a^7 z^3-3 a^7 z^{-3} -23 a^7 z+12 a^7 z^{-1} +a^6 z^6-8 a^6 z^4+20 a^6 z^2+6 a^6 z^{-2} -19 a^6-a^5 z^5+7 a^5 z^3-3 a^5 z^{-3} -15 a^5 z+12 a^5 z^{-1} -a^4 z^4+6 a^4 z^2+3 a^4 z^{-2} -10 a^4+a^3 z^3-a^3 z^{-3} -4 a^3 z+5 a^3 z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



