6 2

From Knot Atlas
Revision as of 17:00, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

6 1.gif

6_1

6 3.gif

6_3

6 2.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 6 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 6 2 at Knotilus!

Dror likes to call 6_2 "The Miller Institute Knot", as it is the logo of the Miller Institute for Basic Research.

The bowline knot of practical knot tying deforms to 6_2.

The Miller Institute Mug [1]
Simple square depiction
3D depiction

Knot presentations

Planar diagram presentation X1425 X5,10,6,11 X3948 X9,3,10,2 X7,12,8,1 X11,6,12,7
Gauss code -1, 4, -3, 1, -2, 6, -5, 3, -4, 2, -6, 5
Dowker-Thistlethwaite code 4 8 10 12 2 6
Conway Notation [312]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 6, width is 3,

Braid index is 3

6 2 ML.gif 6 2 AP.gif
[{8, 2}, {1, 6}, {7, 3}, {2, 4}, {6, 8}, {3, 5}, {4, 7}, {5, 1}]

[edit Notes on presentations of 6 2]

Knot 6_2.
A graph, knot 6_2.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 1
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-7][-1]
Hyperbolic Volume 4.40083
A-Polynomial See Data:6 2/A-polynomial

[edit Notes for 6 2's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 6 2's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 11, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-1, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 6 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-1012χ
3      11
1       0
-1    21 1
-3   11  0
-5  11   0
-7 11    0
-9 1     -1
-111      1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials