10 65
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 65's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1425 X3,10,4,11 X11,19,12,18 X5,15,6,14 X17,7,18,6 X7,17,8,16 X15,9,16,8 X13,1,14,20 X19,13,20,12 X9,2,10,3 |
| Gauss code | -1, 10, -2, 1, -4, 5, -6, 7, -10, 2, -3, 9, -8, 4, -7, 6, -5, 3, -9, 8 |
| Dowker-Thistlethwaite code | 4 10 14 16 2 18 20 8 6 12 |
| Conway Notation | [31,3,21] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
|
![]() [{9, 2}, {1, 7}, {4, 8}, {7, 9}, {10, 13}, {8, 12}, {13, 11}, {3, 5}, {6, 4}, {5, 10}, {2, 6}, {12, 3}, {11, 1}] |
[edit Notes on presentations of 10 65]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 65"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3,10,4,11 X11,19,12,18 X5,15,6,14 X17,7,18,6 X7,17,8,16 X15,9,16,8 X13,1,14,20 X19,13,20,12 X9,2,10,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, -4, 5, -6, 7, -10, 2, -3, 9, -8, 4, -7, 6, -5, 3, -9, 8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 14 16 2 18 20 8 6 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[31,3,21] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(4,\{1,1,2,-1,2,-3,2,2,2,-3,-3\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{9, 2}, {1, 7}, {4, 8}, {7, 9}, {10, 13}, {8, 12}, {13, 11}, {3, 5}, {6, 4}, {5, 10}, {2, 6}, {12, 3}, {11, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-7 t^2+14 t-17+14 t^{-1} -7 t^{-2} +2 t^{-3} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^6+5 z^4+4 z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{2,t^2+t+1\right\}} |
| Determinant and Signature | { 63, 2 } |
| Jones polynomial | |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{-2} +z^6 a^{-4} +3 z^4 a^{-2} +4 z^4 a^{-4} -z^4 a^{-6} -z^4+2 z^2 a^{-2} +7 z^2 a^{-4} -3 z^2 a^{-6} -2 z^2- a^{-2} +5 a^{-4} -3 a^{-6} } |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^9 a^{-3} +z^9 a^{-5} +3 z^8 a^{-2} +6 z^8 a^{-4} +3 z^8 a^{-6} +4 z^7 a^{-1} +5 z^7 a^{-3} +4 z^7 a^{-5} +3 z^7 a^{-7} -4 z^6 a^{-2} -16 z^6 a^{-4} -7 z^6 a^{-6} +2 z^6 a^{-8} +3 z^6+a z^5-9 z^5 a^{-1} -17 z^5 a^{-3} -14 z^5 a^{-5} -6 z^5 a^{-7} +z^5 a^{-9} +z^4 a^{-2} +24 z^4 a^{-4} +12 z^4 a^{-6} -4 z^4 a^{-8} -7 z^4-2 a z^3+6 z^3 a^{-1} +20 z^3 a^{-3} +19 z^3 a^{-5} +4 z^3 a^{-7} -3 z^3 a^{-9} -z^2 a^{-2} -17 z^2 a^{-4} -12 z^2 a^{-6} +z^2 a^{-8} +3 z^2-2 z a^{-1} -6 z a^{-3} -8 z a^{-5} -2 z a^{-7} +2 z a^{-9} + a^{-2} +5 a^{-4} +3 a^{-6} } |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^6+q^4+2 q^{-2} -3 q^{-4} + q^{-6} +2 q^{-10} +4 q^{-12} +2 q^{-16} -2 q^{-18} -2 q^{-20} - q^{-24} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{32}-2 q^{30}+4 q^{28}-7 q^{26}+6 q^{24}-5 q^{22}-2 q^{20}+14 q^{18}-23 q^{16}+32 q^{14}-32 q^{12}+19 q^{10}+2 q^8-34 q^6+62 q^4-74 q^2+66-35 q^{-2} -10 q^{-4} +61 q^{-6} -92 q^{-8} +96 q^{-10} -66 q^{-12} +10 q^{-14} +41 q^{-16} -75 q^{-18} +71 q^{-20} -34 q^{-22} -13 q^{-24} +60 q^{-26} -74 q^{-28} +46 q^{-30} +8 q^{-32} -78 q^{-34} +118 q^{-36} -116 q^{-38} +74 q^{-40} -75 q^{-44} +136 q^{-46} -141 q^{-48} +113 q^{-50} -48 q^{-52} -31 q^{-54} +93 q^{-56} -103 q^{-58} +85 q^{-60} -32 q^{-62} -18 q^{-64} +62 q^{-66} -63 q^{-68} +30 q^{-70} +15 q^{-72} -66 q^{-74} +88 q^{-76} -72 q^{-78} +17 q^{-80} +38 q^{-82} -82 q^{-84} +99 q^{-86} -84 q^{-88} +41 q^{-90} +2 q^{-92} -47 q^{-94} +64 q^{-96} -62 q^{-98} +43 q^{-100} -17 q^{-102} -3 q^{-104} +16 q^{-106} -23 q^{-108} +21 q^{-110} -15 q^{-112} +8 q^{-114} - q^{-116} -3 q^{-118} +4 q^{-120} -4 q^{-122} +3 q^{-124} - q^{-126} + q^{-128} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^5+2 q^3-2 q+3 q^{-1} -2 q^{-3} + q^{-5} +2 q^{-7} - q^{-9} +3 q^{-11} -3 q^{-13} + q^{-15} - q^{-17} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{16}-2 q^{14}-q^{12}+6 q^{10}-5 q^8-6 q^6+13 q^4-4 q^2-14+18 q^{-2} +3 q^{-4} -18 q^{-6} +13 q^{-8} +9 q^{-10} -12 q^{-12} -2 q^{-14} +8 q^{-16} +2 q^{-18} -14 q^{-20} +6 q^{-22} +15 q^{-24} -17 q^{-26} - q^{-28} +18 q^{-30} -13 q^{-32} -7 q^{-34} +12 q^{-36} -4 q^{-38} -5 q^{-40} +4 q^{-42} - q^{-46} + q^{-48} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{33}+2 q^{31}+q^{29}-3 q^{27}-3 q^{25}+5 q^{23}+8 q^{21}-9 q^{19}-14 q^{17}+10 q^{15}+24 q^{13}-10 q^{11}-38 q^9+2 q^7+55 q^5+12 q^3-66 q-36 q^{-1} +73 q^{-3} +61 q^{-5} -64 q^{-7} -81 q^{-9} +49 q^{-11} +95 q^{-13} -28 q^{-15} -92 q^{-17} +5 q^{-19} +80 q^{-21} +22 q^{-23} -61 q^{-25} -37 q^{-27} +36 q^{-29} +55 q^{-31} -13 q^{-33} -71 q^{-35} -15 q^{-37} +77 q^{-39} +38 q^{-41} -81 q^{-43} -57 q^{-45} +71 q^{-47} +78 q^{-49} -55 q^{-51} -83 q^{-53} +30 q^{-55} +84 q^{-57} -10 q^{-59} -68 q^{-61} -13 q^{-63} +50 q^{-65} +20 q^{-67} -31 q^{-69} -19 q^{-71} +13 q^{-73} +15 q^{-75} -5 q^{-77} -7 q^{-79} +2 q^{-81} +4 q^{-83} - q^{-85} - q^{-87} + q^{-91} - q^{-93} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{56}-2 q^{54}-q^{52}+3 q^{50}+3 q^{46}-8 q^{44}-3 q^{42}+11 q^{40}+q^{38}+9 q^{36}-24 q^{34}-16 q^{32}+28 q^{30}+19 q^{28}+27 q^{26}-60 q^{24}-64 q^{22}+32 q^{20}+71 q^{18}+112 q^{16}-73 q^{14}-178 q^{12}-72 q^{10}+95 q^8+300 q^6+60 q^4-255 q^2-315-64 q^{-2} +446 q^{-4} +356 q^{-6} -115 q^{-8} -502 q^{-10} -383 q^{-12} +345 q^{-14} +570 q^{-16} +186 q^{-18} -433 q^{-20} -589 q^{-22} +71 q^{-24} +510 q^{-26} +385 q^{-28} -185 q^{-30} -526 q^{-32} -165 q^{-34} +274 q^{-36} +395 q^{-38} +49 q^{-40} -317 q^{-42} -285 q^{-44} +40 q^{-46} +322 q^{-48} +228 q^{-50} -102 q^{-52} -382 q^{-54} -182 q^{-56} +250 q^{-58} +402 q^{-60} +112 q^{-62} -449 q^{-64} -408 q^{-66} +113 q^{-68} +522 q^{-70} +369 q^{-72} -366 q^{-74} -557 q^{-76} -139 q^{-78} +439 q^{-80} +558 q^{-82} -95 q^{-84} -478 q^{-86} -363 q^{-88} +146 q^{-90} +501 q^{-92} +162 q^{-94} -190 q^{-96} -349 q^{-98} -119 q^{-100} +238 q^{-102} +198 q^{-104} +48 q^{-106} -159 q^{-108} -154 q^{-110} +31 q^{-112} +78 q^{-114} +85 q^{-116} -16 q^{-118} -63 q^{-120} -15 q^{-122} +33 q^{-126} +7 q^{-128} -12 q^{-130} - q^{-132} -7 q^{-134} +6 q^{-136} + q^{-138} -3 q^{-140} +2 q^{-142} -2 q^{-144} + q^{-146} - q^{-150} + q^{-152} } |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^6+q^4+2 q^{-2} -3 q^{-4} + q^{-6} +2 q^{-10} +4 q^{-12} +2 q^{-16} -2 q^{-18} -2 q^{-20} - q^{-24} } |
| 1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{20}-4 q^{18}+10 q^{16}-22 q^{14}+44 q^{12}-74 q^{10}+112 q^8-166 q^6+226 q^4-282 q^2+328-366 q^{-2} +369 q^{-4} -324 q^{-6} +240 q^{-8} -110 q^{-10} -46 q^{-12} +240 q^{-14} -418 q^{-16} +580 q^{-18} -691 q^{-20} +752 q^{-22} -746 q^{-24} +678 q^{-26} -560 q^{-28} +392 q^{-30} -210 q^{-32} +32 q^{-34} +125 q^{-36} -254 q^{-38} +340 q^{-40} -370 q^{-42} +357 q^{-44} -326 q^{-46} +272 q^{-48} -210 q^{-50} +151 q^{-52} -106 q^{-54} +68 q^{-56} -42 q^{-58} +25 q^{-60} -12 q^{-62} +6 q^{-64} -2 q^{-66} + q^{-68} } |
| 2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{18}-q^{16}-2 q^{14}+2 q^{12}+3 q^{10}-3 q^8-5 q^6+4 q^4+5 q^2-7-6 q^{-2} +8 q^{-4} +2 q^{-6} -6 q^{-8} +5 q^{-10} +11 q^{-12} +2 q^{-14} -3 q^{-16} +3 q^{-18} -2 q^{-20} -11 q^{-22} + q^{-24} +5 q^{-26} -4 q^{-28} + q^{-30} +14 q^{-32} +6 q^{-34} -5 q^{-36} -2 q^{-38} +3 q^{-40} -5 q^{-42} -11 q^{-44} -2 q^{-46} +2 q^{-48} - q^{-50} - q^{-52} + q^{-54} +2 q^{-56} + q^{-58} + q^{-62} } |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{14}-2 q^{12}+3 q^8-6 q^6+3 q^4+8 q^2-11+3 q^{-2} +11 q^{-4} -17 q^{-6} - q^{-8} +12 q^{-10} -10 q^{-12} +11 q^{-16} +4 q^{-18} + q^{-20} +2 q^{-22} +12 q^{-24} -3 q^{-26} -11 q^{-28} +11 q^{-30} -3 q^{-32} -18 q^{-34} +10 q^{-36} -12 q^{-40} +7 q^{-42} + q^{-44} -4 q^{-46} +3 q^{-48} + q^{-50} - q^{-52} + q^{-54} } |
| 1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^7+q^5-q^3+2 q- q^{-1} +2 q^{-3} -3 q^{-5} - q^{-9} + q^{-11} +3 q^{-13} +3 q^{-15} +5 q^{-17} +2 q^{-21} -3 q^{-23} - q^{-25} -3 q^{-27} - q^{-31} } |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{16}-q^{14}-q^{12}+q^{10}-q^8-2 q^6+3 q^4+4 q^2-3-2 q^{-2} +6 q^{-4} +2 q^{-6} -13 q^{-8} -2 q^{-10} +10 q^{-12} -6 q^{-14} -11 q^{-16} +8 q^{-18} +7 q^{-20} -8 q^{-22} +2 q^{-24} +16 q^{-26} +7 q^{-28} +2 q^{-30} +19 q^{-32} +15 q^{-34} -8 q^{-36} +5 q^{-40} -15 q^{-42} -21 q^{-44} -3 q^{-46} - q^{-48} -11 q^{-50} -5 q^{-52} +7 q^{-54} +4 q^{-56} -3 q^{-58} +3 q^{-60} +4 q^{-62} + q^{-68} } |
| 1,0,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 65"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-7 t^2+14 t-17+14 t^{-1} -7 t^{-2} +2 t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^6+5 z^4+4 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left\{2,t^2+t+1\right\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 63, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{-2} +z^6 a^{-4} +3 z^4 a^{-2} +4 z^4 a^{-4} -z^4 a^{-6} -z^4+2 z^2 a^{-2} +7 z^2 a^{-4} -3 z^2 a^{-6} -2 z^2- a^{-2} +5 a^{-4} -3 a^{-6} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^9 a^{-3} +z^9 a^{-5} +3 z^8 a^{-2} +6 z^8 a^{-4} +3 z^8 a^{-6} +4 z^7 a^{-1} +5 z^7 a^{-3} +4 z^7 a^{-5} +3 z^7 a^{-7} -4 z^6 a^{-2} -16 z^6 a^{-4} -7 z^6 a^{-6} +2 z^6 a^{-8} +3 z^6+a z^5-9 z^5 a^{-1} -17 z^5 a^{-3} -14 z^5 a^{-5} -6 z^5 a^{-7} +z^5 a^{-9} +z^4 a^{-2} +24 z^4 a^{-4} +12 z^4 a^{-6} -4 z^4 a^{-8} -7 z^4-2 a z^3+6 z^3 a^{-1} +20 z^3 a^{-3} +19 z^3 a^{-5} +4 z^3 a^{-7} -3 z^3 a^{-9} -z^2 a^{-2} -17 z^2 a^{-4} -12 z^2 a^{-6} +z^2 a^{-8} +3 z^2-2 z a^{-1} -6 z a^{-3} -8 z a^{-5} -2 z a^{-7} +2 z a^{-9} + a^{-2} +5 a^{-4} +3 a^{-6} } |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_77, K11n71, K11n75,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 65"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_77, K11n71, K11n75,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (4, 7) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} 2 is the signature of 10 65. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{23}-2 q^{22}+q^{21}+5 q^{20}-11 q^{19}+2 q^{18}+21 q^{17}-30 q^{16}-4 q^{15}+52 q^{14}-49 q^{13}-20 q^{12}+84 q^{11}-58 q^{10}-40 q^9+100 q^8-52 q^7-50 q^6+90 q^5-31 q^4-46 q^3+59 q^2-10 q-31+27 q^{-1} -14 q^{-3} +8 q^{-4} + q^{-5} -3 q^{-6} + q^{-7} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{45}+2 q^{44}-q^{43}-q^{42}-q^{41}+7 q^{40}-3 q^{39}-10 q^{38}+q^{37}+27 q^{36}-5 q^{35}-42 q^{34}-11 q^{33}+78 q^{32}+25 q^{31}-105 q^{30}-66 q^{29}+136 q^{28}+119 q^{27}-159 q^{26}-179 q^{25}+164 q^{24}+252 q^{23}-166 q^{22}-307 q^{21}+140 q^{20}+371 q^{19}-127 q^{18}-399 q^{17}+84 q^{16}+429 q^{15}-59 q^{14}-418 q^{13}+11 q^{12}+405 q^{11}+24 q^{10}-360 q^9-64 q^8+308 q^7+88 q^6-237 q^5-110 q^4+178 q^3+105 q^2-112 q-98+69 q^{-1} +75 q^{-2} -34 q^{-3} -55 q^{-4} +16 q^{-5} +35 q^{-6} -6 q^{-7} -21 q^{-8} +2 q^{-9} +11 q^{-10} - q^{-11} -4 q^{-12} - q^{-13} +3 q^{-14} - q^{-15} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{74}-2 q^{73}+q^{72}+q^{71}-3 q^{70}+5 q^{69}-7 q^{68}+5 q^{67}+6 q^{66}-16 q^{65}+11 q^{64}-18 q^{63}+24 q^{62}+32 q^{61}-49 q^{60}-4 q^{59}-66 q^{58}+71 q^{57}+133 q^{56}-56 q^{55}-51 q^{54}-251 q^{53}+66 q^{52}+340 q^{51}+94 q^{50}-11 q^{49}-608 q^{48}-164 q^{47}+499 q^{46}+446 q^{45}+328 q^{44}-963 q^{43}-673 q^{42}+384 q^{41}+829 q^{40}+981 q^{39}-1082 q^{38}-1251 q^{37}-34 q^{36}+1020 q^{35}+1716 q^{34}-929 q^{33}-1660 q^{32}-555 q^{31}+979 q^{30}+2277 q^{29}-639 q^{28}-1812 q^{27}-987 q^{26}+779 q^{25}+2557 q^{24}-309 q^{23}-1718 q^{22}-1269 q^{21}+454 q^{20}+2525 q^{19}+57 q^{18}-1372 q^{17}-1390 q^{16}+15 q^{15}+2164 q^{14}+398 q^{13}-802 q^{12}-1265 q^{11}-424 q^{10}+1504 q^9+554 q^8-183 q^7-881 q^6-649 q^5+776 q^4+435 q^3+204 q^2-410 q-559+266 q^{-1} +184 q^{-2} +264 q^{-3} -95 q^{-4} -319 q^{-5} +61 q^{-6} +17 q^{-7} +158 q^{-8} +10 q^{-9} -134 q^{-10} +20 q^{-11} -22 q^{-12} +62 q^{-13} +14 q^{-14} -47 q^{-15} +12 q^{-16} -13 q^{-17} +18 q^{-18} +6 q^{-19} -14 q^{-20} +4 q^{-21} -3 q^{-22} +4 q^{-23} + q^{-24} -3 q^{-25} + q^{-26} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




