T(11,3)
From Knot Atlas
Jump to navigationJump to search
|
|
![]() |
See other torus knots |
Edit T(11,3) Quick Notes
|
Edit T(11,3) Further Notes and Views
Knot presentations
Planar diagram presentation | X7,37,8,36 X22,38,23,37 X23,9,24,8 X38,10,39,9 X39,25,40,24 X10,26,11,25 X11,41,12,40 X26,42,27,41 X27,13,28,12 X42,14,43,13 X43,29,44,28 X14,30,15,29 X15,1,16,44 X30,2,31,1 X31,17,32,16 X2,18,3,17 X3,33,4,32 X18,34,19,33 X19,5,20,4 X34,6,35,5 X35,21,36,20 X6,22,7,21 |
Gauss code | 14, -16, -17, 19, 20, -22, -1, 3, 4, -6, -7, 9, 10, -12, -13, 15, 16, -18, -19, 21, 22, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -21, 1, 2, -4, -5, 7, 8, -10, -11, 13 |
Dowker-Thistlethwaite code | 30 -32 34 -36 38 -40 42 -44 2 -4 6 -8 10 -12 14 -16 18 -20 22 -24 26 -28 |
Braid presentation |
|
Polynomial invariants
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
Vassiliev invariants
V2 and V3: | (40, 220) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 16 is the signature of T(11,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Torus Knot Page master template (intermediate). See/edit the Torus Knot_Splice_Base (expert). Back to the top. |
|