Article:Alg-geom/9304007/unidentified-references
From Knot Atlas
Jump to navigationJump to search
A.~Ash, D.~Mumford, M.~Rapoport, and Y.~Tai, {\em Smooth compactifications of locally symmetric varieties}, {L}ie Groups: History, Frontiers and Applications, vol.~IV, Math Sci Press, Brookline (Mass.), 1975. P.~S. Aspinwall, B.~R. Greene, and D.~R. Morrison, {\em Multiple mirror manifolds and topology change in string theory}, Phys. Lett. B, in press, 1993. P.~S. Aspinwall and C.~A. L\"utken, {\em Quantum algebraic geometry of superstring compactifications}, Nuclear Phys. B {\bf 355} (1991), 482--510. P.~S. Aspinwall and D.~R. Morrison, {\em Topological field theory and rational curves}, Comm. Math. Phys. {\bf 151} (1993), 245--262. W.~L. Baily, Jr. and A.~Borel, {\em Compactification of arithmetic quotients of bounded symmetric domains}, Annals of Math. (2) {\bf 84} (1966), 442--528. A.~Beauville, {\em Vari\'et\'es {K\"a}hlereinnes dont la premi\`ere classe de {C}hern est nulle}, J. Diff. Geom. {\bf 18} (1983), 755--782. F.~A. Bogomolov, {\em {H}amiltonian {K}\"ahler manifolds}, Dokl. Akad. Nauk SSSR {\bf 243} (1978), no.~5, 1101--1104. C.~Borcea, {\em On desingularized {H}orrocks-{M}umford quintics}, J. Reine Angew. Math. {\bf 421} (1991), 23--41. A.~Borel, {\em Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem}, J. Diff. Geom. {\bf 6} (1972), 543--560. E.~Calabi, {\em On {K\"a}hler manifolds with vanishing canonical class}, Algebraic Geometry and Topology, A Symposium in Honor of {S}. {L}efschetz (R.~H. Fox et~al., eds.), Princeton University Press, Princeton, 1957, pp.~78--89. P.~Candelas, X.~C. de~la Ossa, P.~S. Green, and L.~Parkes, {\em A pair of {C}alabi-{Y}au manifolds as an exactly soluble superconformal theory}, Nuclear Phys. B {\bf 359} (1991), 21--74. E.~Cattani and A.~Kaplan, {\em Polarized mixed {H}odge structures and the local monodromy of a variation of {H}odge structure}, Invent. Math. {\bf 67} (1982), 101--115. S.~Cecotti, {\em {$N=2$} {L}andau-{G}inzburg vs. {C}alabi-{Y}au {$\sigma$}-models: Non-perturbative aspects}, Internat. J. Modern Phys. A {\bf 6} (1991), 1749--1813. P.~Deligne, {\em Equations diff{\'e}rentielles {\`a} points singuliers r{\'e}guliers}, Lecture Notes in Math., vol. 163, Springer-Verlag, Berlin, Heidelberg, New York, 1970. \bysame, {\em La conjecture de {W}eil, {II}}, Inst. Hautes {\'E}tudes Sci. Publ. Math. {\bf 52} (1980), 137--252. W.~Fulton, {\em Introduction to toric varieties}, Annals of Math. Studies, vol. 131, Princeton University Press, Princeton, 1993. G.~van~der Geer, {\em {H}ilbert modular surfaces}, {E}rgeb. {M}ath. {G}renzgeb. (3) {\bf 16}, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1988. A.~Grassi and D.~R. Morrison, {\em Automorphisms and the {K\"a}hler cone of certain {C}alabi-{Y}au manifolds}, Duke Math. J., to appear. M.~B. Green, J.~H. Schwarz, and E.~Witten, {\em Superstring theory}, Cambridge University Press, Cambridge, 1987. B.~R. Greene, D.~R. Morrison, and M.~R. Plesser, {\em Mirror manifolds in higher dimension}, in preparation. B.~R. Greene and M.~R. Plesser, {\em Duality in {C}alabi-{Y}au moduli space}, Nuclear Phys. B {\bf 338} (1990), 15--37. P.~A. Griffiths, {\em Periods of integrals on algebraic manifolds: Summary of main results and discussion of open problems}, Bull. Amer. Math. Soc. {\bf 76} (1970), 228--296. \bysame, ed., {\em Topics in transcendental algebraic geometry}, Annals of Math. Studies, vol. 106, Princeton University Press, Princeton, 1984. J.~C. Hemperly, {\em The parabolic contribution to the number of linearly independent automorphic forms on a certain bounded domain}, Amer. J. Math. {\bf 94} (1972), 1078--1100. F.~E.~P. Hirzebruch, {\em {H}ilbert modular surfaces}, Enseign. Math. (2) {\bf 19} (1973), 183--282. T.~H\"ubsch, {\em {C}alabi-{Y}au manifolds: A bestiary for physicists}, World Scientific, Singapore, New Jersey, London, Hong Kong, 1992. J.~Igusa, {\em A desingularization problem in the theory of {S}iegel modular functions}, Math. Ann. {\bf 168} (1967), 228--260. Y.~Kawamata, {\em Crepent blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces}, Annals of Math. (2) {\bf 127} (1988), 93--163. A.~Landman, {\em On the {P}icard-{L}efschetz transformations}, Trans. Amer. Math. Soc. {\bf 181} (1973), 89--126. H.~B. Laufer, {\em Taut two-dimensional singularities}, Math. Ann. {\bf 205} (1973), 131--164. E.~Looijenga, {\em New compactifications of locally symmetric varieties}, Proceedings of the 1984 {V}ancouver Conference in Algebraic Geometry (J.~Carrell et~al., eds.), CMS Conference Proceedings, vol.~6, American Mathematical Society, Providence, 1986, pp.~341--364. S.~Mori, {\em Threefolds whose canonical bundles are not numerically effective}, Annals of Math. (2) {\bf 116} (1982), 133--176. \bysame, {\em Hartshorne conjecture and extremal ray}, Sugaku Expositions {\bf 1} (1988), 15--37. D.~R. Morrison, {\em The {K}uga-{S}atake variety of an abelian surface}, J. Algebra {\bf 92} (1985), 454--476. \bysame, {\em {P}icard-{F}uchs equations and mirror maps for hypersurfaces}, Essays on Mirror Manifolds (S.-T. Yau, ed.), International Press Co., Hong Kong, 1992, pp.~241--264. \bysame, {\em Mirror symmetry and rational curves on quintic threefolds: A guide for mathematicians}, J. Amer. Math. Soc. {\bf 6} (1993), 223--247. \bysame, {\em {H}odge-theoretic aspects of mirror symmetry}, in preparation. D.~Mumford, {\em The topology of normal singularities of an algebraic surface and a criterion for simplicity}, Inst. Hautes {\'E}tudes Sci. Publ. Math. {\bf 9} (1961), 5--22. T.~Oda, {\em Convex bodies and algebraic geometry: An introduction to the theory of toric varieties}, {E}rgeb. {M}ath. {G}renzgeb. (3) {\bf 15}, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1988. K.~Oguiso, {\em On algebraic fiber space structures on a {C}alabi-{Y}au 3-fold}, preprint, 1992. R.~T. Rockafellar, {\em Convex analysis}, Princeton University Press, Princeton, 1970. I.~Satake, {\em On the compactification of the {S}iegel space}, J. Indian Math. Soc. (N.S.) {\bf 20} (1956), 259--281. \bysame, {\em On the arithmetic of tube domains (blowing-up of the point at infinity)}, Bull. Amer. Math. Soc. {\bf 79} (1973), 1076--1094. W.~Schmid, {\em Variation of {H}odge structure: The singularities of the period mapping}, Invent. Math. {\bf 22} (1973), 211--319. C.~Schoen, {\em On fiber products of rational elliptic surfaces with section}, Math. Z. {\bf 197} (1988), 177--199. H.~J.~M. Sterk, {\em Compactifications of the period space of {E}nriques surfaces: Arithmetic and geometric aspects}, Ph.D. thesis, Katholiecke Universiteit Nijmegen, 1988. G.~Tian, {\em Smoothness of the universal deformation space of compact {C}alabi-{Y}au manifolds and its {P}eterson-{W}eil metric}, Mathematical Aspects of String Theory (S.-T. Yau, ed.), World Scientific, Singapore, 1987, pp.~629--646. A.~N. Todorov, {\em The {W}eil-{P}etersson geometry of the moduli space of {$SU(n{\ge}3)$} ({C}alabi-{Y}au) manifolds, {I}}, Comm. Math. Phys. {\bf 126} (1989), 325--246. E.~Viehweg, {\em Weak positivity and the stability of certain {H}ilbert points, {III}}, Invent. Math. {\bf 101} (1990), 521--543. P.~Wagreich, {\em Singularities of complex surfaces with solvable local fundamental group}, Topology {\bf 11} (1972), 51--72. P.~M.~H. Wilson, {\em The {K}\"ahler cone on {C}alabi-{Y}au threefolds}, Invent. Math. {\bf 107} (1992), 561--583. E.~Witten, {\em Topological sigma models}, Comm. Math. Phys. {\bf 118} (1988), 411--449. \bysame, {\em On the structure of the topological phase of two-dimensional gravity}, Nuclear Phys. B {\bf 340} (1990), 281--332. \bysame, {\em Mirror manifolds and topological field theory}, Essays on Mirror Manifolds (S.-T. Yau, ed.), International Press Co., Hong Kong, 1992, pp.~120--159. \bysame, {\em Phases of {$N{=}2$} theories in two dimensions}, preprint, 1993. S.-T. Yau, {\em On {C}alabi's conjecture and some new results in algebraic geometry}, Proc. Nat. Acad. Sci. U.S.A. {\bf 74} (1977), 1798--1799.