Article:Alg-geom/9304007/unidentified-references

From Knot Atlas
Jump to navigationJump to search
  

 A.~Ash, D.~Mumford, M.~Rapoport, and Y.~Tai, {\em Smooth compactifications of   locally symmetric varieties}, {L}ie Groups: History, Frontiers and   Applications, vol.~IV, Math Sci Press, Brookline (Mass.), 1975.  

 P.~S. Aspinwall, B.~R. Greene, and D.~R. Morrison, {\em Multiple mirror   manifolds and topology change in string theory}, Phys. Lett. B, in press,   1993.  

 P.~S. Aspinwall and C.~A. L\"utken, {\em Quantum algebraic geometry of   superstring compactifications}, Nuclear Phys. B {\bf 355} (1991), 482--510.  

 P.~S. Aspinwall and D.~R. Morrison, {\em Topological field theory and rational   curves}, Comm. Math. Phys. {\bf 151} (1993), 245--262.  

 W.~L. Baily, Jr. and A.~Borel, {\em Compactification of arithmetic quotients of   bounded symmetric domains}, Annals of Math. (2) {\bf 84} (1966), 442--528.  

 A.~Beauville, {\em Vari\'et\'es {K\"a}hlereinnes dont la premi\`ere classe de   {C}hern est nulle}, J. Diff. Geom. {\bf 18} (1983), 755--782.  

 F.~A. Bogomolov, {\em {H}amiltonian {K}\"ahler manifolds}, Dokl. Akad. Nauk   SSSR {\bf 243} (1978), no.~5, 1101--1104.  

 C.~Borcea, {\em On desingularized {H}orrocks-{M}umford quintics}, J. Reine   Angew. Math. {\bf 421} (1991), 23--41.  

 A.~Borel, {\em Some metric properties of arithmetic quotients of symmetric   spaces and an extension theorem}, J. Diff. Geom. {\bf 6} (1972), 543--560.  

 E.~Calabi, {\em On {K\"a}hler manifolds with vanishing canonical class},   Algebraic Geometry and Topology, A Symposium in Honor of {S}. {L}efschetz    (R.~H. Fox et~al., eds.), Princeton University Press, Princeton, 1957, pp.~78--89.  

 P.~Candelas, X.~C. de~la Ossa, P.~S. Green, and L.~Parkes, {\em A pair of   {C}alabi-{Y}au manifolds as an exactly soluble superconformal theory},   Nuclear Phys. B {\bf 359} (1991), 21--74.  

 E.~Cattani and A.~Kaplan, {\em Polarized mixed {H}odge structures and the local   monodromy of a variation of {H}odge structure}, Invent. Math. {\bf 67}   (1982), 101--115.  

 S.~Cecotti, {\em {$N=2$} {L}andau-{G}inzburg vs. {C}alabi-{Y}au   {$\sigma$}-models: Non-perturbative aspects}, Internat. J. Modern Phys. A   {\bf 6} (1991), 1749--1813.  

 P.~Deligne, {\em Equations diff{\'e}rentielles {\`a} points singuliers   r{\'e}guliers}, Lecture Notes in Math., vol. 163, Springer-Verlag, Berlin,   Heidelberg, New York, 1970.  

 \bysame, {\em La conjecture de {W}eil, {II}}, Inst. Hautes {\'E}tudes Sci.   Publ. Math. {\bf 52} (1980), 137--252.  

 W.~Fulton, {\em Introduction to toric varieties}, Annals of Math. Studies, vol.   131, Princeton University Press, Princeton, 1993.  

 G.~van~der Geer, {\em {H}ilbert modular surfaces}, {E}rgeb. {M}ath. {G}renzgeb.   (3) {\bf 16}, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris,   Tokyo, 1988.  

 A.~Grassi and D.~R. Morrison, {\em Automorphisms and the {K\"a}hler cone of   certain {C}alabi-{Y}au manifolds},   Duke Math. J., to appear.  

 M.~B. Green, J.~H. Schwarz, and E.~Witten, {\em Superstring theory}, Cambridge   University Press, Cambridge, 1987.  

 B.~R. Greene, D.~R. Morrison, and M.~R. Plesser, {\em Mirror manifolds in   higher dimension}, in preparation.  

 B.~R. Greene and M.~R. Plesser, {\em Duality in {C}alabi-{Y}au moduli space},   Nuclear Phys. B {\bf 338} (1990), 15--37.  

 P.~A. Griffiths, {\em Periods of integrals on algebraic manifolds: Summary of   main results and discussion of open problems}, Bull. Amer. Math. Soc. {\bf   76} (1970), 228--296.  

 \bysame, ed., {\em Topics in transcendental algebraic geometry}, Annals   of Math. Studies, vol. 106, Princeton University Press, Princeton, 1984.  

 J.~C. Hemperly, {\em The parabolic contribution to the number of linearly   independent automorphic forms on a certain bounded domain}, Amer. J. Math.   {\bf 94} (1972), 1078--1100.  

 F.~E.~P. Hirzebruch, {\em {H}ilbert modular surfaces}, Enseign. Math. (2) {\bf   19} (1973), 183--282.  

 T.~H\"ubsch, {\em {C}alabi-{Y}au manifolds: A bestiary for physicists}, World   Scientific, Singapore, New Jersey, London, Hong Kong, 1992.  

 J.~Igusa, {\em A desingularization problem in the theory of {S}iegel modular   functions}, Math. Ann. {\bf 168} (1967), 228--260.  

 Y.~Kawamata, {\em Crepent blowing-up of 3-dimensional canonical singularities   and its application to degenerations of surfaces}, Annals of Math. (2) {\bf   127} (1988), 93--163.  

 A.~Landman, {\em On the {P}icard-{L}efschetz transformations}, Trans. Amer.   Math. Soc. {\bf 181} (1973), 89--126.  

 H.~B. Laufer, {\em Taut two-dimensional singularities}, Math. Ann. {\bf 205}   (1973), 131--164.  

 E.~Looijenga, {\em New compactifications of locally symmetric varieties},   Proceedings of the 1984 {V}ancouver Conference in Algebraic Geometry    (J.~Carrell et~al., eds.), CMS Conference Proceedings, vol.~6,   American Mathematical Society, Providence, 1986, pp.~341--364.  

 S.~Mori, {\em Threefolds whose canonical bundles are not numerically   effective}, Annals of Math. (2) {\bf 116} (1982), 133--176.  

 \bysame, {\em Hartshorne conjecture and extremal ray}, Sugaku Expositions {\bf   1} (1988), 15--37.  

 D.~R. Morrison, {\em The {K}uga-{S}atake variety of an abelian surface}, J.   Algebra {\bf 92} (1985), 454--476.  

 \bysame, {\em {P}icard-{F}uchs equations and mirror maps for hypersurfaces},   Essays on Mirror Manifolds  (S.-T. Yau, ed.), International Press   Co., Hong Kong, 1992, pp.~241--264.  

 \bysame, {\em Mirror symmetry and rational curves on quintic threefolds: A   guide for mathematicians}, J. Amer. Math. Soc. {\bf 6} (1993), 223--247.  

 \bysame, {\em {H}odge-theoretic aspects of mirror symmetry}, in preparation.  

 D.~Mumford, {\em The topology of normal singularities of an algebraic surface   and a criterion for simplicity}, Inst. Hautes {\'E}tudes Sci. Publ. Math.   {\bf 9} (1961), 5--22.  

 T.~Oda, {\em Convex bodies and algebraic geometry: An introduction to the   theory of toric varieties}, {E}rgeb. {M}ath. {G}renzgeb. (3) {\bf 15},   Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1988.  

 K.~Oguiso, {\em On algebraic fiber space structures on a {C}alabi-{Y}au   3-fold}, preprint, 1992.  

 R.~T. Rockafellar, {\em Convex analysis}, Princeton University Press,   Princeton, 1970.  

 I.~Satake, {\em On the compactification of the {S}iegel space}, J. Indian Math.   Soc. (N.S.) {\bf 20} (1956), 259--281.  

 \bysame, {\em On the arithmetic of tube domains (blowing-up of the point at   infinity)}, Bull. Amer. Math. Soc. {\bf 79} (1973), 1076--1094.  

 W.~Schmid, {\em Variation of {H}odge structure: The singularities of the period   mapping}, Invent. Math. {\bf 22} (1973), 211--319.  

 C.~Schoen, {\em On fiber products of rational elliptic surfaces with section},   Math. Z. {\bf 197} (1988), 177--199.  

 H.~J.~M. Sterk, {\em Compactifications of the period space of {E}nriques   surfaces: Arithmetic and geometric aspects}, Ph.D. thesis, Katholiecke   Universiteit Nijmegen, 1988.  

 G.~Tian, {\em Smoothness of the universal deformation space of compact   {C}alabi-{Y}au manifolds and its {P}eterson-{W}eil metric}, Mathematical   Aspects of String Theory  (S.-T. Yau, ed.), World Scientific, Singapore, 1987,   pp.~629--646.  

 A.~N. Todorov, {\em The {W}eil-{P}etersson geometry of the moduli space of   {$SU(n{\ge}3)$} ({C}alabi-{Y}au) manifolds, {I}}, Comm. Math. Phys. {\bf 126}   (1989), 325--246.  

 E.~Viehweg, {\em Weak positivity and the stability of certain {H}ilbert points,   {III}}, Invent. Math. {\bf 101} (1990), 521--543.  

 P.~Wagreich, {\em Singularities of complex surfaces with solvable local   fundamental group}, Topology {\bf 11} (1972), 51--72.  

 P.~M.~H. Wilson, {\em The {K}\"ahler cone on {C}alabi-{Y}au threefolds},   Invent. Math. {\bf 107} (1992), 561--583.  

 E.~Witten, {\em Topological sigma models}, Comm. Math. Phys. {\bf 118} (1988),   411--449.  

 \bysame, {\em On the structure of the topological phase of two-dimensional   gravity}, Nuclear Phys. B {\bf 340} (1990), 281--332.  

 \bysame, {\em Mirror manifolds and topological field theory}, Essays on Mirror   Manifolds  (S.-T. Yau, ed.), International Press Co., Hong Kong, 1992,   pp.~120--159.  

 \bysame, {\em Phases of {$N{=}2$} theories in two dimensions}, preprint, 1993.  

 S.-T. Yau, {\em On {C}alabi's conjecture and some new results in algebraic   geometry}, Proc. Nat. Acad. Sci. U.S.A. {\bf 74} (1977), 1798--1799.