Article:Alg-geom/9310003/unidentified-references

From Knot Atlas
Jump to navigationJump to search
  

 P.S. Aspinwall and C.A. L\"utken, and G.G. Ross, {\em Construction and couplings of mirror manifolds}, Phys. Lett. B {\bf 241}, n.3, (1990),  373-380.   

 P.S. Aspinwall and C.A. L\"utken, {\em Geometry of mirror manifolds}, Nuclear Physics B, {\bf 353} (1991), 427-461.  

 P.S. Aspinwall and C.A. L\"utken, {\em Quantum algebraic geometry of superstring compactifications}, Nuclear Physics B, {\bf 355} (1991), 482-510.  

 P.S. Aspinwall, {\em Multiple Mirror Manifolds and Topology Change in String Theory}, Preprint IASSNS-HEP-93/4.  

 V. V. Batyrev, {\em Boundedness of the degree of higher-dimensional toric Fano varieties},  Moscow Univ. Math. Bull. {\bf 37}, n.1, (1982), 28-33.   

 V. V. Batyrev, {\em Variations of the Mixed Hodge Structure of Affine Hypersurfaces in Algebraic Tori}, Duke Math. J. {\bf 69}, (1993), 349-409.  

 V. V. Batyrev, {\em Quantum Cohomology Rings of Toric Manifolds}, Preprint MSRI, (1993).  

 V.V. Batyrev, D. A. Cox, {\em On the Hodge Structure of Projective Hypersurfaces in Toric Varieties}, Preprint 1993.   

 V.V. Batyrev, D. van Straten, {\em Generalized Hypergeometric Functions and Rational Curves on Calabi-Yau Complete Intersections in Toric Varieties}, Preprint 1993.  

 P. Berglund, T. H\"ubsch, {\em A Generalized Construction of Mirror Manifolds}, in Essays on Mirror Manifolds (ed. S.-T. Yau), International Press Co., Hong Kong, 1992, 388-407.   

 A.A. Borisov, L.A. Borisov, {\em Singular toric Fano varieties}, Mat. Sbornik {\bf 183}, n.2, (1992), 134-141 (in Russian).   

 P. Candelas, M. Lynker, R. Schimmrigk, {\em Calabi-Yau Manifolds in Weighted ${\bf P}^4$}, Nucl. Phys., {\bf B 341} (1990), 383-402.  

 P. Candelas, X.C. de la Ossa, P.S. Green, and L. Parkes, {\em A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory}, Nuclear Phys. B {\bf 359} (1991), 21-74.   

 V.I. Danilov, {\em The geometry of toric varieities}. Russian Math. Survey, {\bf  33}, n.2, (1978), 97-154.  

 V.I. Danilov, A.G. Khovanski\^i, {\em Newton polyhedra and an algorithm for computing  Hodge-Deligne numbers}, Math.  USSR Izv. {\bf 29} (1987) 279-298.  

 P. Deligne, {\em Th\'eory de Hodge} , II, III, Publ. Math. I.H.E.S. {\bf 40} (1971) 5-58; {\bf 44} (1975) 5-77.  %

 M. Demazure, {\em Sous-groupes alg\'{e}briques de %rang maximum du grupe de Cremona}, Ann. Sci. \'{E}cole Norm. %Sup. (4) {\bf 3} (1970), 507-588.  

 L. Dixon, in {\em Superstrings. Unified Theories and Cosmology 1987}, G. Furlan et al., eds., World Scientific 1988.   

 G. Ellingsrud and S.A. Str{\o}mme, {\em The number of twisted cubic curves on the general quintic threefold}, in Essays on Mirror Manifolds (ed. S.-T. Yau), International Press Co., Hong Kong (1992), 181-240.    

 A. Font, {\em Periods and duality symmetries in Calabi-Yau com\- pac\-ti\-fi\-ca\-tions}, Nucl. Phys. {\bf B 389} (1993) 153  

 I. M. Gelfand, A.V. Zelevinsky, and M.M. Kapranov, {\em Equations of hypergeometric type and toric varieties}, Func. Anal. Appl. {\bf 28} (1989), n. 2, 12-26; English trans. 94-106.   

 M.B. Green, J.H. Schwarz, E. Witten, {\em Superstring theory} I, II, Cambrdge  Univ. Press, Cambridge, New York, New Rochelle, Melbourne, Sydney, 1988  

 B.R. Greene and M.R. Plesser, {\em Duality in Calabi-Yau moduli space}, Nuclear Phys. B {\bf 338} (1990), 15-37.  

 B.R. Greene and M.R. Plesser, {\em An Introduction to Mirror Manifolds}, in Essays on Mirror Manifolds (ed. S.-T. Yau), International Press Co., Hong Kong, 1992, 1-30.   

 R. Hartshorn, {Algebraic Geometry}, Springer-Verlag, Berline-Heidelberg-New York, 1977.  

 D. Hensley, {\em Lattice vertex polytopes with interior lattice points}, Pacific J. Math. , {\bf 105}, n.1, 1983, pp. 183-191.   

 S. Katz, {\em On the finitness of rational curves on quintic threefolds,} Compositio Math. {\bf 60} (1986) 151-162.   

 S. Katz, {\em Rational curves on Calabi-Yau $3$-folds}, in {\sl Essays on Mirror Manifolds} (Ed. S.-T. Yau), Int. Press Co., Hong Kong, (1992) 168-180.   


 A.G. Khovansi\^i, {\em Newton polyhedra and the genus of full intersections}, Funk. Anal Priloz, {\bf 12}, n.1, (1978), 51-61.   

 A.G. Khovanski\^i, {\em Newton polyhedra $($resolution of singularities$)$}, Sovremen. Probl. Mat. {\bf 22}, Moscow (1983) (in Russian). Engl. trans.: J. of Soviet Math., v.27, 1984, 2811-2830.    

 A. Klemm, S. Theisen, {\em Consideration of One Modulus Calabi-Yau Compactification$:$ Picard-Fuchs Equation, K\"ahler Potentials and Mirror Maps},  Nucl. Phys. {\bf B 389} (1993) 153.   

 A. Klemm. S. Theisen, {\em Mirror Maps and Instanton Sums for Complete Intersections in Weighted Projective Spaces}, LMU-TPW 93-08, Preprint April 1993.  

 A.G. Kouchnirenko, {\em Poly\'edres de Newton et nombres de Milnor}, Invent. Math., {\bf 32}, n.1 (1976)  

 M. Kreuzer, R. Schimmrigk, H. Skarke, {\em Abelian Landau-Ginzburg Orbifolds and Mirror Symmetry}, Nucl. Hys. {\bf B 372} (1992) 61-86.    

 W. Lerche, C. Vafa and N. Warner, Nucl. Phys. {\bf B324} (1989) 427.  

 A. Libgober, and J. Teitelbaum, {\em Lines on Calabi-Yau complete intersections, mirror symmetry, and Picard-Fuchs equations}, Duke Math. J., Int. Math. Res Notices {\bf 1} (1993) 29.  

 M. Lynker, R. Schimmrigk, {\em Landau-Ginzburg theories as orbifolds}, Phys. Lett. B, {\bf 249}, n.2 (1990) 237-242.    

 D.G. Markushevich, {\em Resolution of singularities (toric method)}, appendix to: D.G. Markushevich, M.A. Olshanetsky, and A.M. Perelomov, {\em Description of a class of superstring compactification related to semi-simple Lie algebras}, Comm. Math. Phys. {\bf 111} (1987), 247-274.  

 D. Morrison, {\em Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians},  J. Amer. Math. Soc. {\bf 6} (1993), 223-247.   

 D. Morrison, {\em Picard-Fuchs equations and mirror maps for hypersurfaces}, in Essays on Mirror Manifolds (ed. S.-T. Yau), International Press Co., Hong Kong, 1992, 241-264.    

 T. Oda, {\em Convex Bodies and Algebraic Geometry - An Introduction to the Theory of Toric Varieties}, Ergebnisse der Math. (3)15, Springer-Verlag, Berlin, Heildelberg,New York, London, Paris, Tokyo,1988.   

 M. Reid, {\em Decomposition of toric morphisms}, in {\em Arithmetic and Geometry, papers dedicated to I.R. Shafarevich on the occasion of his 60th birthday} (M. Artin and J. Tate, eds.), vol.II, {\em Geometry}, Progress in Math. 36, Birkhauser, Boston, Basel, Stuttgart, 1983, 395-418.  

 S.-S. Roan, S.-T. Yau {\em On Ricci Flat $3$-Folds}, Acta Mathematica Sinica, New Series {\bf 3} (1987), 256-288.  

 S.-S. Roan, {\em The Mirror of Calabi-Yau Orbifold}, Int. J. of Math., vol. 2, n. 4 (1991) 439-455.   

 R. Schimmrigk, {\em The construction of mirror symmetry}, preprint HD-THEP-92-17.