Article:Alg-geom/9410001/unidentified-references

From Knot Atlas
Jump to navigationJump to search
  

 M. Atiyah and G. Segal, {\em On the equivariant Euler characteristic}, J. Geom. and Phys. {\bf 6} (1989), 671-677.  

 V. V. Batyrev, {\em Variations of the mixed Hodge structure of affine hypersurfaces in algebraic tori}, Duke Math. J., {\bf 69} (1993), 349-409.  

 V.V. Batyrev, {\em Quantum Cohomology Rings of Toric Manifolds}, in ``Journ\'{e}es de g\'{e}om\'{e}trie alg\'{e}brique d'Orsay'', Ast\'{e}risque {\bf 218} (1993) 9 -34.  

 V.V. Batyrev, {\em Dual Polyhedra and Mirror Symmetry for Calabi-Yau hypersurfaces in Toric Varieties}, J. Algeb. Geom. {\bf 3} (1994), 493-535.  

 V. V. Batyrev and L. A. Borisov, {\em Dual Cones and Mirror Symmetry for Generalized Calabi-Yau Manifolds}, Preprint (1994).  

 J. Bertin and D. Markushevich, {\em Singularit\'es quotients non ab\'eliennes de dimension 3 et vari\'et\'es de Bogomolov}, Pr\'epublication de l'Institut Fourier, No 216 (1992).  

 L. A. Borisov, {\em Towards the Mirror Symmetry for Calabi-Yau Complete Intersections in Gorenstein Toric Fano Varieties}, Preprint (1993).   

 P. Candelas, E. Derrick and L. Parkes, {\em Generalized Calabi-Yau Manifolds and the Mirror of a Rigid Manifold}, Preprint, CERN-TH.6831/93, UTTG-24-92.   

 V. I. Danilov, {\em The geometry of toric varieties}, Russian Math. Surveys {\bf 33} (1978), 97-154.  

 V. I. Danilov, A.G. Khovanski\^i: {\em Newton polyhedra and an algorithm for computing Hodge-Deligne numbers}, Math. USSR, Izvestiya {\bf 29} (1987) 279-298.   

 P. Deligne, {\em Th\'{e}orie de Hodge {\rm II}}, Publ. Math. IHES {\bf 40} (1972), 5 - 57.   

 L. Dixon, J. Harvey, C. Vafa, E. Witten, {\em Strings on orbifolds} I,II, Nucl. Phys. {\bf B 261} (1985), 678-686; {\bf 274} (1986), 285-314.  

 W. Fulton, {\em Introduction to toric varieties}, Princeton University Press (1993).   

 G. Gonzalez-Sprinberg, J.L. Verdier, {\em Construction g\'{e}om\'{e}trique de la correspondance de McKay}, Ann. Scien. Ecole . Norm. Sup\'{e}r. {\bf 16} (1983), 409-449.  

 L. G\"ottsche, {\em The Betti numbers of the Hilbert scheme of points on a smooth projective surface}, Math. Ann., {\bf 286} (1990), 193-207.  

 L. G\"ottsche, {\em Hilbert Schemes of Zero-Dimensional Subschemes of Smooth Varieties}, Lect. Notes in Math., Vol. {\bf 1572}, Springer-Verlag (1994).  

 L. G\"ottsche, {\em Orbifold Hodge Numbers of Hilbert Schemes}, Notes, (1994).  

  L. G\"ottsche, W. Soergel, {\em Perverse sheaves and the cohomology of Hilbert schemes of smooth algebraic surfaces}, Math. Ann. {\bf 296} (1993), 235-245.  

 B. Greene, R. Plesser, {\em Duality in Calabi-Yau moduli space}, Nuclear Phys. B, {\bf 338} (1990) 15-37.  

 B. Greene, R. Plesser, {\em An introduction to mirror manifolds}, Essays on Mirror Manifolds (S.-T. Yau, ed.), International Press Co., Hong Kong, 1992, pp. 1-30.  

 B. Greene, D. Morrison, R. Plesser, {\em Mirror Symmetry in Higher Dimensions}, CLNS-93/1253, IASSNS-HEP-94/2, YCT-P31-92.  

 F. Hirzebruch, {\em Der Satz von Riemann-Roch in faisceau-theoretisher Formulierung}, Proc. Int. Congress of Math., Vol. III, (1954) pp. 457-473 (Collected  Papers, Bd. I, (1987), pp. 128-144, Springer-Verlag.)  

 F. Hirzebruch, T. H\"ofer, {\em On the Euler number of an orbifold}, Math. Ann., {\bf 286} (1990), 255-260.   

 Y. Ito, {\em Crepant resolution of trihedral singularities}, Proc. Japan Acad., Ser. A, {\bf 70} (1994), 131-136.   

 Y. Ito, {\em Gorenstein quotient singularities of monomial type in dimension three}, Preprint, University of Tokyo (1994).  

 T. Kawasaki, {\em The Signature Theorem for $V$-manifolds}, Topology {\bf 17} (1978), 75-83.  

 A. Klemm, M.G. Schmidt, {\em Orbifolds by cyclic permutations of tensor product conformal field theories}, Physics Letters B, {\bf 245} (1990), 53-58.  

 H. Kn\"orrer, {\em Group representations and the resolution of rational double points}, Contemp. Math., {\bf 45} (1985), 175-222.   

 D.G. Markushevich, M.A. Olshanetsky, A.M. Perelomov, {\em Description of a class of superstring compactifications related to semi-simple Lie algebras}, Comm. Math. Phys. {\bf 111} (1987), 247-274.  

 D.G. Markushevich, {\em Resolution of ${\bf C}^3/H_{168}$}, Israel Institute of Technology, Preprint, 1992.   

 J. McKay, {\em Graphs, Singularities and Finite Groups}. In: ``The Santa Cruz Conference of Finite Groups", Proc. of Symp. in Pure Math., AMS, {\bf 37} (1980), 183-186.   

 D. Morrison, {\em Mirror symmetry and rational curves on quintic threefolds: a guide for mathematicians}, J. Amer. Math. Soc {\bf 6} (1993), 223-247.  

 D. Morrison, {\em Quantum Cohomology and Mirror Symmetry}, Lecture Notes, Trento Summer School, June 1994.  

 T. Oda, {\em Convex Bodies and Algebraic Geometry. An Introduction to the Theory of Toric Varieties.} Ergebnisse der Mathematik und ihrer  Grenzgebiete,  {\bf Bd 15} (1988), Springer-Verlag.  

 M. Reid, {\em Young person's guide to canonical singularities}, In: Algebraic Geometry, Bowdowin 1985, Proc. Symp. Pure Math. {\bf 46} (1987) 345-416.  

 M. Reid, {\em The McKay correspondence and the physicists' Euler number}, Lecture Notes given at Univ. of Utah (Sept.) 1992, and MSRI (Nov.) 1992.   

 S.-S. Roan, {\em On the generalization of Kummer surfaces}, J. Diff. Geom., {\bf 30} (1989), 523-537.  

 S.-S. Roan, {\em The Mirror of Calabi-Yau Orbifold}, Int. J. of Math. {\bf 2} (1991), 439-455.  

 S.-S. Roan,{\em Orbifold Euler Characteristic}, Inst. of Math. Acad. Sinica, Preprint R931130-3.  

 S.-S. Roan,{\em On $c_1 = 0$ Resolution of Quotient Singularity}, Int. J. of Math. {\bf 5} (1994), 523-536.   

 S.-S. Roan, {\em Minimal Resolutions of Gorenstein Orbifolds in Dimension Three}, Inst. of Math. Acad. Sinica, Preprint R940606-1.  

 S.-S. Roan and S.T. Yau, {\em On Ricci flat 3-fold}, Acta Mathematica Sinica, New Series, {\bf 3} (1987), 256-288.    

 A. V. Sardo-Infirri, {\em Resolution of Orbifold Singularities and Representation Moduli of McKay Quivers}, University of Oxford, Thesis, 1994.  

 I. Satake, {\em On the generalization of the notion of manifold}, Proc Nat. Acad. Sci. USA {\bf 42} (1956), 359-363.  

 R. Schimmrigk, {\em Critical Superstring Vacua from Noncritical manifolds: A Novel Framework for String Compactification and Mirror Symmetry}, Phys. Review Letters, {\bf 70} (1993), 3688-3691.  

 R. Schimmrigk, {\em K\"ahler manifolds with positive first Chern class and Mirrors of Rigid Calabi-Yau Manifolds}, Preprint, BONN-HE-93-47, NSF-ITP-93-146.   

 R. Schimmrigk, {\em Mirror Symmetry and String Vacua from a Special Class of Fano Varieties}, Preprint, BONN-TH-94-007.  

 C. Vafa, {\em String Vacua and Orbifoldized LG Models}, Mod. Phys. Lett. {\bf A4} (1989) 1169-1185.  

 E. Zaslow, {\em Topological Orbifold Models and Quantum Cohomology Rings}, Commun. Math. Phys., {\bf 156} (1993) 301-331.  

 St.S.-T. Yau, Y.Yu: {\em Gorenstein quotient singularities in dimension three}, Mem. Amer. Math. Soc, {\bf 105} (1993).