Article:Alg-geom/9602010/unidentified-references
From Knot Atlas
Jump to navigationJump to search
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% M.F. Atiyah, Riemann surfaces and spin structures, {\em Ann. Sci. \'Ecole Norm. Sup.} {\bf 4} (1971) 47--62. M.F. Atiyah, N.J. Hitchin and I.M. Singer, Self-duality in four dimensional Riemannian geometry, {\em Proc. Royal Soc. Lond.}, Series A, {\bf 362} (1978) 425--61. A. Bertram, Stable pairs and stable parabolic pairs, {\em J. Alg. Geom.} {\bf 3} (1994) 703--724. S.B. Bradlow, Vortices in holomorphic line bundles over closed K\"{a}hler manifolds, {\em Commun. Math. Phys. } {\bf 135} (1990) 1--17. S.B. Bradlow, Special metrics and stability for holomorphic bundles with global sections, {\em \JDG\ } {\bf 33} (1991) 169--214. S.B. Bradlow and G. Daskalopoulos, Moduli of stable pairs for holomorphic bundles over Riemann surfaces, {\em Int. J. Math.} {\bf 2} (1991) 477--513. S.B. Bradlow and G. Daskalopoulos, Moduli of stable pairs for holomorphic bundles over Riemann surfaces II, {\em Int. J. Math.} {\bf 4} (1993) 903-925. S.B. Bradlow, G. Daskalopoulos, O. Garc\'{\i}a--Prada and R. Wentworth, Stable augmented bundles over Riemann surfaces. {\em Vector Bundles in Algebraic Geometry, Durham 1993}, Cambridge University Press, 1995. S.B. Bradlow and O. Garc\'{\i}a--Prada, Stable triples, equivariant bundles and dimensional reduction, {\em Math. Ann.}, in press. S.B. Bradlow and O. Garc\'{\i}a--Prada, Higher cohomology triples and holomorphic extensions, {\em Comm. in Analysis and Geom.}, {\bf 3} (1996) 421-464. R. Brussee, $C^\infty$ properties of K\"ahler surfaces, preprint 1995. S.K. Donaldson, Anti-self-dual Yang--Mills connections on a complex algebraic surface and stable vector bundles, {\em Proc. Lond. Math. Soc.} {\bf 3} (1985) 1--26. S.K. Donaldson, Infinite determinants, stable bundles and curvature, {\em Duke Math. J.} {\bf 54} (1987) 231--247. S.K. Donaldson, The Seiberg--Witten equations and 4-manifold topology, {\em Bull. Amer. Math. Soc.} {\bf 33} (1996) 45-70. P. Feehan and T. Leness, Non-abelian monopoles and the relation between Donaldson and Seiberg--Witten invariants of smooth four-manifolds, in preparation. R. Friedman and J. Morgan, Algebraic surfaces and Seiberg--Witten invariants, preprint 1995. O. Garc\'{\i}a--Prada, {\em The Geometry of the Vortex Equation}, D. Phil. Thesis, Oxford 1991. O. Garc\'{\i}a--Prada, Invariant connections and vortices, {\em Commun. Math. Phys.}, {\bf 156} (1993) 527--546. O. Garc\'{\i}a--Prada, A direct existence proof for the vortex equations over a compact Riemann surface, {\em Bull. Lond. Math. Soc.} {\bf 26} (1994) 88--96. O. Garc\'{\i}a--Prada, Dimensional reduction of stable bundles, vortices and stable pairs, {\em Int. J. Math.}, {\bf 5} (1994) 1--52. O. Garc\'{\i}a--Prada, Monopoles and vortices on four-manifolds, {\em Proceedings of the Les Houches summer school on Quantum Symmetries 1995}, Elsevier (Eds. A. Connes and K. Gaw\c{e}dzki), to appear. N.J. Hitchin, Harmonic spinors, {\em Adv. in Math.} {\bf 14} (1974) 1-55. D. Huybrechts and M. Lehn, Stable pairs on curves and surfaces, {\em J. Alg. Geom.} {\bf 4} (1995) 67--104. D. Huybrechts and M. Lehn, Framed modules and their moduli, {\em Int. J. Math.} {\bf 6} (1995) 297--324. A. Jaffe and C. Taubes, {\em Vortices and Monopoles}, Progress in Physics {\bf 2}, Boston, Birkh\"auser, 1980. P.B. Kronheimer and T.S. Mrowka, The genus of embedded surfaces in the projective plane, {\em Math. Res. Letts.} {\bf 1} (1994) 797--808. J.M.F. Labastida and M. Mari\~no, Non-abelian monopoles on four manifolds, {\em Nuclear Physics} {\bf B 448} (1995) 373. H. Blaine Lawson and M.-L. Michelsohn, {\em Spin Geometry}, Princeton University Press, 1989. Ch. Okonek and A. Teleman, The coupled Seiberg--Witten equations, vortices, and moduli spaces of stable pairs, preprint 1995. Ch. Okonek and A. Teleman, Quaternionic monopoles, preprint 1995. V. Pidstrigach and A. Tyurin, Localisation of the Donaldson's invariants along Seiberg--Witten classes, preprint 1995. C.H. Taubes, Arbitrary $N$-vortex solutions to the first order Ginzburg--Landau equations, {\em Commun. Math. Phys.} {\bf 72} (1980) 277--292. C.H. Taubes, On the equivalence of the first and second order equations for gauge theories, {\em Commun. Math. Phys.} {\bf 75} (1980) 207--227. M. Thaddeus, Stable pairs, linear systems and the Verlinde formula, {\em Invent. Math.} {\bf 117} (1994) 317--353. K.K. Uhlenbeck and S.T. Yau, On the existence of Hermitian--Yang--Mills connections on stable bundles over compact K\"{a}hler manifolds, {\em Comm. Pure and Appl. Math.} {\bf 39--S} (1986) 257--293. E. Witten, Monopoles and four-manifolds, {\em Math. Res. Letts.} {\bf 1} (1994) 769-796. %%%%%%%%%%%%%%%%%%%%%%